• Title/Summary/Keyword: flexibility element

Search Result 340, Processing Time 0.032 seconds

Critical Speed Analysis of the Turbopump considering the Casing Structural Flexibility (케이징 구조 유연성을 고려한 터보펌프 임계 속도 해석)

  • 전성민;김진한;곽현덕;윤석환
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.92-97
    • /
    • 2006
  • A critical speed analysis is performed for a 30 ton thrust turbopump considering the casing structural flexibility. A full three-dimensional finite element method including rotor and casing is used to predict rotordynamic behavior. Rotor alone model and rotor-casing coupled model with fixed-fixed and free-free boundary conditions are calculated to investigate the effects of the casing structural flexibility. The stiffness of ball bearings are applied as unloaded and loaded values to consider rotor operating conditions in vacuum and real engine respectively. From the results of the numerical analyses, it is found that the effect of the casing structural flexibility reduces the critical speeds of the turbopump. Especially, the loaded rotor condition with higher bearing stiffness is affected dramatically rather than the unloaded rotor condition with lower bearing stiffness.

A Typological Approach to Structural Characteristics in Open Housing (오픈하우징의 구조적 유형화에 관한 연구)

  • Mo, Jeong-Hyun;Lee, Yeun-Sook
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.45-52
    • /
    • 2004
  • The purpose of this research was to identify the structural characteristics of open housing typologically and systematically. The main method of this study was content analysis and literature review on open housing. This study found that the typological analysis on terminology and the details of the constituents concerning structural patterns in open housing indicated that the main approaches were classified into three criteria such as 'Organization Element', 'Construction Element', and 'Equipment Element'. Organization Element was classified into 'Main Dwelling Unit Area and its Form', 'Room Organization Method', 'Relationship with the Main Dwelling Unit's External Constituents', and 'Combination Method of Support and Infill'. Construction Element was classified into 'Method of Structure' and 'Structural Element Technology'. Equipment Element was classified into 'Method of Using Duct' and 'Wet Zone Method'. The attributes were determined based on these classifications. The results of this study can be used to construct an evaluation tool and further to develop a framework in understanding open housing. Technical research should be conducted on the variables that affect the flexibility of space.

Effective Element Removal Methods for Topology Optimization (위상 최적화를 위한 효율적인 요소 제거법)

  • 한석영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.46-51
    • /
    • 2000
  • In case of ESO(evolutionary structural optimization) which is one of topology optimization methods, the element removal ratio is fixed throughout topology optimization by 1 or 2 %. As a result it has no flexibility for various types of structures and thus the rate of convergence might not be efficient. Thus various element removal methods are developed in order to improve the efficiency of ESO. In this paper, various element removal methods for ESO are compared with each other. Each element removal method is explained, and applied to a bracket and a Michell type of beam. In addition, a new bi-directional element removal method is suggested in order to obtain much better optimized topology. From the results of stress, displacement and the rate of convergence for the examples under the same mass constraints, it is verified that the suggested element removal method is the most effective. .

  • PDF

A Study on Flexible Pallet Design for Assembly Rationalization (조립합리화를 위한 유연성 있는 Pallet 설계에 관한 연구)

  • Mok, Hak-Soo;Lee, Jae-Man;Yang, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.75-86
    • /
    • 1999
  • In the assembly system, a pallet plays an important role of transfer and storage. As products become various, many different pallets are also necessary. Since some of them are redundant, a design of pallet with high flexibility is important. This paper suggests design alternatives, in designing pallets with high flexibility. The purpose of this study is to rationalize assembly process of mid-small size products. Every pallet has suitability values depending on characteristic factors of a product, and this value is determined by using AHP (Analytic Hierarchy Process) technique. As the characteristic factors of a product are changed, the suitability value is also changed. Design alternatives can be found by tracing change of the suitability value, which are based on correlation between the characteristic factors of a product and a pallet element.

  • PDF

Dynamic Modeling and Control of Flexible Space Structures

  • Chae, Jang-Soo;Park, Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1912-1921
    • /
    • 2003
  • This paper presents a global mode modeling of space structures and a control scheme from the practical point of view. Since the size of the satellite has become bigger and the accuracy of attitude control more strictly required, it is necessary to consider the structural flexibility of the spacecraft. Although it is well known that the finite element (FE) model can accurately model the flexibility of the satellite, there are associated problems : FE model has the system matrix with high order and does not provide any physical insights, and is available only after all structural features have been decided. Therefore, it is almost impossible to design attitude and orbit controller using FE model unless the structural features are in place. In order to deal with this problem, the control design scheme with the global mode (GM) model is suggested. This paper describes a flexible structure modeling and three-axis controller design process and demonstrates the adequate performance of the design with respect to the maneuverability by applying it to a large flexible spacecraft model.

Analysis of Structural joints Using Flexibility Influence Coefficient (유연성 영향 계수를 이용한 구조물의 결합부 해석)

  • 이재운;고강호;이수일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.831-836
    • /
    • 1994
  • This paper presents rational modeling and analysis method for complex structures with various structural joints. For modeling of structural joint, a general modeling technique is newly proposed by flexibility influence coefficient and inverse of flexibility matrix and static reduction concept which is applied to the retained DOFs(degrees of freedom) of detailed finite element model of struction joints. By this method,joint model with contact surface. which can not be reduced by the general reduction theory such as Guyan reduction theory ,can be reduced effectively. And in this method, the nonlinearity of the contact surface can be linearized within a proper range and the boundary effects of joint region can be excluded. Using the proposed method, screwed joint,glued joint and bolted joint are analyzed. And the effectiveness of the proposed method is verified by experiments.

  • PDF

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

The Characteristics of Flexibility applied to Unit Plan of Housing by Residents Participation - focusing on European Multi-story Housing applying Residents Participation - (거주자 참여형 공동주거의 평면계획에 적용된 가변성의 특성 - 유럽의 거주자 참여형 다층 공동주거를 중심으로 -)

  • Kim, Hyun-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.113-123
    • /
    • 2018
  • First of all, the multi-story Housing applying resident's participation in europe was classified by the menu selection method, the two-step supply method and the cooperative method. And then I analyzed flexible unit plan of cases for deriving the planning methode and the characteristics of flexibility. First, I analyzed the area and form of the unit plan, structure and Installation, fixed and variable elements to derive the planning method. The area of units are distributed from a minimum of $35m^2$ to a maximum of $150m^2$, and many of the unit planes have a narrow front and a deep depth. The structure is a long-span wall-structure or a skeleton structure, and is designed without any columns and bearing walls in the interior space for flexibility in spatial composition. The vertical shafts are located in the center of the unit in a box-form or in the corner at the unit dividing wall for free placement of interior wall. Fixed elements are framework and facility systems. Most of the future residents in the two-steps supply method and the cooperative method were able to freely design the internal space within the zoning concept proposed by the architect and change the location of the facade element within module system proposed by the architect. Second, the characteristics of the flexibility applied to the unit plan were divided in integrated flexibility, functional flexibility, construction flexibility, and supply flexibility. The integrated flexibility enables residents to give the variable space combination based on the complex structure of the inner space for providing various living experiences. Regarding functional flexibility, the three-dimensional spatial structure with neutral space has multi-functionality according to the needs of residents and easily accepts mixing of hybrid programs such as work and residence. Constructive flexibility allows residents to create identity by freely planning interior space and changing the size or location of facade components in a determined system of architects. Finally, various types of size and space composition are proposed and realized in the whole building applying menu selection method, so that flexibility in the offer can accommodate and integrate various types of living.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure (회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석)

  • Seo, Chan-Hee;Jang, Gun-Hee;Lee, Ho-Seong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF