• Title/Summary/Keyword: flexibility coefficient

Search Result 134, Processing Time 0.024 seconds

Fiber Dimensions and Chemical Properties of Various Nonwood Materials and Their Suitability for Paper Production

  • lahan M. Sarwar;Mun Sung Phil;Rashid Mamunur
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.5 s.108
    • /
    • pp.29-35
    • /
    • 2004
  • Fiber dimensions, their derived values and chemical properties of cotton stalks (Gosypium hirsutum L), jute stick (Corchorus capsularis) and dhancha (Sesbania aculeate) have been examined to assess their suitability for paper production. Cotton stalks have a good derived values especially slender ratio, which is comparable to hardwood. The flexibility coefficient of these three non wood plants is better than hardwood. Anatomical analysis shows higher percentage of fibers and vessels than in general non wood plants. Lignin, $\alpha$-cellulose and pentosan contents in these three nonwood plants are within the range of hardwood. Neutral sugar analysis of cotton stalks, jute stick and dhancha shows that the glucose in the major sugar followed by xylose and mannose. The arabinose and galactose are present in minor amount. Alkaline nitrobenzene oxidation of cotton stalks, jute stick and dhancha wood meal exhibits that these nonwood plant lignins mainly consist of syringyl (S) and guaiacyl (V) units. The S/V ratios are 1.6, 1.2 and 2.1 for cotton stalks, jute stick and dhancha, respectively.

Effects of Alkali Treatment on Physical Properties of PET Fabrics (알칼리 처리에 의한 폴리에스테르 직물의 물성 변화)

  • Yu, Hye-Ja;Choe, Jong-Myeong;Lee, Hye-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.609-619
    • /
    • 1996
  • Polyethylene Terephthalate (PET) has been used as a mainstream fiber to make silklike fiber. The silky characteristics such as softness, dry touch feeling and flexibility can be obtained by weight reduction treatment. In aqueous alkali solution, the surface of PET is dissolved away and reduced in weight. The PET fiber, yarn and fabric become thinner and the gaps between fibers are wider. Its mobility is greatly improved without change of basic structures of the treated PET fibrics. The alkali treatment was conducted under the various experimental conditions such as alkali (NaOH) concentration, treatment time and temperature. As the weight loss increased, drapability improved and tensile strength remarkably reduced. When the PET fabrics lost 30% in their weight, drape coefficient lowered as much as 30oA and tensile stregth lowered as much as 50%. The weight loss over 30% brings great improvement in drapability and dyeability and significant decline in durability. By the alkali treatment, absorbency in spectrophotometer of dyed PET can be increased as much as 82% due to the increase of the surface area and formation of microvoids on the surface.

  • PDF

Heat Transfer Characteristics according to the Tube Arrangement of Bundle Type Plastic Oil Cooler (플라스틱 관다발 타입 오일쿨러의 튜브 배열에 따른 열전달 특성)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Kim, Hyun-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • It has been argued that the use of plastics can cause problems during design and manufacture owing to their low strength, relatively poor thermal conductivity and large thermal expansion. However, the advantages of plastics e.g., corrosion resistance, low cost, curtailment of weight, design flexibility etc., can compensate abundantly for the disadvantages. This study analyzes and compares the heat transfer performance characteristics of automotive compact oil cooler composed of plastic tube bundle with conventional metal oil cooler on the same core area basis as diameter, tube thickness, number of tube or tube arrangement varies. The performance analyses are accomplished by use of computational fluid dynamics program Fluent 6.2, which is verified and compared with the results of performance tests. The result of analyses is coincided with that of experiments. Flow pattern at air side according to tube arrangement is dominant factor which affects heat dissipation in case of similar total heat transfer surface area.

Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure

  • Singh, Abhishek Kumar;Chaki, Mriganka Shekhar;Hazra, Bristi;Mahto, Shruti
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface. Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common interface of composite structure in context of the present problem which serves as a salient feature of the present study.

Damping Identification Analysis of Membrane Structures under the Wind Load by Wavelet Transform

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, we take advantage of Wavelet Transform to identify damping ratios of membrane structures under wind action. Due to the lightweight and flexibility of membrane structures, they are very sensitive to the wind load, and show a type of fluid-structure interaction phenomenon simultaneously. In this study, we firstly obtain the responses of an air-supported membrane structure by ADINA with the consideration of this characteristic, and then conduct Wavelet Transform on these responses. Based on the Wavelet Transform, damping ratios could be obtained from the slope of Wavelet Transform in a semi-logarithmic scale at a certain dilation coefficient. According to this principle, damping ratios could eventually be obtained. There are two numerical examples in this study. The first one is a simulated signal, which is used to verify the accuracy of the Wavelet Transform method. The second one is an air-supported membrane structure under wind action, damping ratios obtained from this method is about 0.05~0.09. The Wavelet Transform method could be regarded as a very good method for the the damping analysis, especially for the large spatial structures whose natural frequencies are closely spaced.

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties

  • Kim, Jiwon;Lim, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.272-277
    • /
    • 2017
  • Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.

Factors Influencing Organizational Commitment and Job Satisfaction of Nurses (간호사의 직무만족과 조직몰입에 영향을 미치는 요인)

  • An, Hye-Gyung;Kang, In-Soon
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2006
  • Purpose: This study was to identify factors that influence the organizational commitment and job satisfaction of nurses. Method: The data were collected from 1st, August until 7th, August, 2005. The subjects were 238 nurses from a general hospital in Busan. Data were analyzed with descriptive statistics, t-test, one-way ANOVA, Pearson correlation coefficient, and stepwise multiple regression using SPSS program. Result: The organizational commitment and job satisfaction was significant positive correlations with flexibility, satisfaction, competence factors and significant negative correlations with empathy factors and centralization factor. The most powerful predictors of Nurses's organizational commitment and job satisfaction was managerial strategy of organizational characteristics. And, satisfaction factors of professional self-concept, affiliative-dominant culture and conservative- dominant culture and innovative-dominant culture were powerful predictor factors. The Other powerful predictors of nurses's job satisfaction were satisfaction factors of professional Self-concept, communication and centralization factor of organizational characteristics, affiliative-dominant culture and conservative-dominant culture, professional image factor of nurse image. Conclusion: This study revealed that important factors for nurses's organizational commitment and job satisfaction. Consequently, the manager should be make effective managerial strategy and encourage that nurse have more satisfy to professional self-concept. And the manager make constant efforts to create an affiliative culture in hospital.

  • PDF

Degradation Prediction of Piezo-Composite Actuator under Cyclic Electric Field (반복하중을 받는 압전 복합재료 작동기의 피로 특성)

  • Setiawan Hery;Goo Nam Seo;Yoon Kwang Joon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.286-289
    • /
    • 2004
  • This paper presents the fatigue characteristics of LIPCA (LIghtweight Piezo-Composite Actuator) device system. The LIPCA device system is composed of a piezoelectric ceramic layer and fiber reinforced lightweight composite layers. Typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. The advantages of the LIPCA design are weight reduction by using the lightweight fiber reinforced plastic layers without compromising the generation of high force and large displacement and design flexibility by selecting the fiber direction and the size of prepreg layers. To predict the degradation of actuation performance of LIPCA due to fatigue, the cyclic electric loading tests using PZT specimens were performed and the strain for a given excitation voltage was measured during the test. The results from the PZT fatigue test were implemented into CLPT (Classical Laminated Plate Theory) model to predict the degradation of LIPCA's actuation displacement. The fatigue characteristic of PZT was measured using a test system composed of a supporting jig, a high voltage power supplier, data acquisition board, PC, and evaluated.

  • PDF

South Korea as a Global Sourcing Site for Textile and Apparel Produce (글로벌 소싱 기지로서의 한국 섬유.의류산업의 현황)

  • 박혜정;이영주;임숙자
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.7
    • /
    • pp.819-830
    • /
    • 2003
  • Korea is facing great threat from other countries as a major global sourcing site for textile and apparel products. The threat has been augmented by changes in external environment such as advents of Trading Blocs and Free Trade Area(FTA) as well as internal environment such as hikes in labor cost and lack of flexibility in accommodating international buyers' needs. This study analyzed international buyers' sourcing activities in Korea for the purpose of developing strategies to enhance competitiveness of the Korean textile and apparel industries in the global market. The data used in this study were gathered by surveying 52 non-Korean textile and apparel product buyers with cooperation of the Korea Federation of Textile Industries (KOFOTI). The data were analyzed by mean, frequency, Pearson correlation coefficient, and x$^2$ analysis. The results indicated that Korea is still attractive to many international buyers especially to those who have been engaged in global sourcing for longer periods of time with bigger purchasing budgets. However, in order to expand and solidify their customer bases, Korean companies should focus more on developing competitively priced value added products a step ahead of their foreign competitors, diversifying their marketing channels including internet.

자재조달문제에 있어 z-변환의 응용

  • 장하복;유정호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.357-365
    • /
    • 1991
  • Military material-supply problem is one of the most important logistic problems under conscription system. Formally, two approaches were followed lowed to this problem. (1) Needs for material per soldier is estimated by past experience. The total demand for the material is estimated by multiplication of this coefficient and the number of soldiers given in the governmental programme. (2) The total demand for the material is estimated by the forcast based on the past statistics. The material supply system based on these estimates, however, relies too much on past statistics ;lack of flexibility is feared to adapt itself to changes in conscription programme, life-time of materials and so on. In this paper, the author has followed new approach : The conscription system itself is a linear input-output system, in which sequences of enlistment and dischargement are regarded as input and output. And the sequencial demands for the material are related by another linear transformation to the former sequences. In this regard z-transformation is applied to construct to transfer functions associated with this system. With these transfer functions, methods are established to determine the material demand corresponding to conscription programme and life-time distribution. Numerical methods by computers are also prepared.

  • PDF