• Title/Summary/Keyword: flexibility coefficient

Search Result 134, Processing Time 0.022 seconds

A Study on the Job Productivity by the Smart Work Investment - Focused on the Organizational Change Resistance and the Communication - (스마트워크 투자에 따른 직무 생산성에 관한 연구 - 조직 변화저항과 의사소통을 중심으로-)

  • Jung, Byoung-Ho
    • Management & Information Systems Review
    • /
    • v.37 no.3
    • /
    • pp.83-113
    • /
    • 2018
  • The purpose of this study to empirically examine a smart work investment and job performance by change resistance. Firstly, There investigates mediating role of the communication between the smart work investment and the job performance. Secondly, It will identify the job productivity differences through a level of organizational change resistance that reduced smart work investment. The smart work is to provide the flexibility of time and location and is a working method to improve a work productivity of organization members. The introduction of smart work means the adoption of new organizational culture, institution and technology and requires a novel change of a custom and pattern on existing organization culture and institution because of transformation form of communication and collaboration. The method of this study adopts a structural equation model to test a mediating effect of communication and a moderating effect of change resistance level. This model confirms whether smart work investments provide a positive impact on communication and organizational productivity. In addition, I will classify a change resistance level of smart work by cluster analysis and then check a critical path difference of job productivity between each group. As a result, The organizational IT, institution and culture on the smart work investment appeared to important influencers in communication and also had a direct influence of individual performance. Also, The three independent variables of smart work investment have an indirect influence of individual and organizational performance through communication mediating variables. However, the organizational IT and institution as independent variables do not provide direct influence of organization performance. Nevertheless, two independent variables of organizational IT and institution have an indirect influence the organization performance through communication mediating variables. As a result of confirming a productivity of three groups on organization resistance, there was a difference the individual and organizational performance among groups. The low-level group of organizational resistance showed high coefficient value of performance compared to other groups. The group analysis implications, The smart work investment appeared significantly to revise the institution first, build culture secondly and advanced technology lastly. The theoretical implication from this study contributes an extension of social science theory through socio-technical systems, institution, culture, change resistance and job performance based on smart work. The practical implications explain the smart work success in step-by-step investment rather than radical investment as level management of change resistance. In future research, the smart work performance between private and public firms will analyze a difference of the organizational culture, institution, technology and performance.

Evaluation Criteria and Preferred Image of Jeans Products based on Benefit Segmentation (진 제품 구매자의 추구혜택에 따른 평가기준 및 선호 이미지)

  • Park, Na-Ri;Park, Jae-Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.974-984
    • /
    • 2007
  • The purpose of this study was to find differences in evaluation criteria and to find differences in preferred images based on benefits segmented groups of jeans products consumers. Male and female Korean university students participated in the study. Quota sampling method was used to collect the data based on gender and a residential area of the respondents. Data from 492 questionnaires were used in the analysis. Factor analysis, Cronbach's alpha coefficient, cluster analysis, one-way ANOVA, and post-hoc test were conducted. As a result, respondents who seek multi-benefits considered aesthetic criteria(e.g., color, style, design, fit) and quality performance criteria(e.g., durability, ease of care, contractibility, flexibility) more importantly when evaluating and purchasing jeans products. Respondents who seek brand name considered extrinsic criteria(e.g., brand reputation, status symbol, country of origin, fashionability) more importantly than respondents who seek economic efciency. Respondents who seek multi-benefits such as attractiveness, fashion, individuality, and utility tend to prefer all the images: individual image, active image, sexual image, sophisticated image, and simple image when wearing jeans products. Respondents who seek fashion are likely to prefer individual image, and respondents who seek brand name more prefer both individual image and polished image. Mean while, respondents who seek economical efficiency less prefer sexual image and polished image.

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

Physicochemical Characteristics and Skin Absorption of Transfersomes Containing Centella asiatica Extract According to Edge Activators (Edge Activator 에 따른 병풀추출물 함유 트렌스퍼좀의 물리화학적 특성과 피부흡수)

  • Eun-hee Lee;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.147-157
    • /
    • 2023
  • Centella asiatica extract is widely used as a raw material for cosmetics due to its various effects, but it is difficult to expect penetration into the skin due to its high molecular weight and low solubility. In order to solve these problems, lipid-based liposomes of various types were developed to increase skin absorption. Therefore, in this study, we tried to increase the skin absorption rate by preparing transfersomes using surfactants as edge activators in existing liposomes. Liposome and transfersomes containing Span 80 and Tween 20, 60, 80, and 85, respectively, were prepared using a high-pressure homogenizer, and we evaluated the particle size, polydispersity index, zeta potential, and skin absorption rate. As a result, there was almost no change in the physical properties of particle size, polydispersity index and zeta potential from 25 ℃ to 60 d, and the particle size of transfersomes containing Tween 20, 60, and 80 increased after 60 d at 45 ℃. Madecassoside, main substances of the Centella asiatica extract was used as an standard and madecassoside was measured and calculated when measuring the skin absorption rate using Franz diffusion cells. As a result, formulations containing Tween 20 were the most, whereas formulations containing Span 80 were the least. According to the skin absorption coefficient (Kp) value, all formulations showed 'very fast', and the absorption rate was similar or greater than that of liposomes, except for formulations containing Span 80. Through this, it was confirmed that the larger the HLB value of the nonionic surfactant, the smaller the particle size of the transfersome, and the increased skin absorption rate due to the increased flexibility of the vesicle membrane. Through this study, transfersome using surfactant as an edge activator can be expected to solve local skin problems not only as a cosmetic raw material or product, but also by increasing skin absorption.