DOI QR코드

DOI QR Code

Physicochemical Characteristics and Skin Absorption of Transfersomes Containing Centella asiatica Extract According to Edge Activators

Edge Activator 에 따른 병풀추출물 함유 트렌스퍼좀의 물리화학적 특성과 피부흡수

  • Eun-hee Lee (Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University) ;
  • Kyung-Sup Yoon (Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University)
  • 이은희 (제주대학교 화학.코스메틱스학과) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과)
  • Received : 2023.05.18
  • Accepted : 2023.06.28
  • Published : 2023.06.30

Abstract

Centella asiatica extract is widely used as a raw material for cosmetics due to its various effects, but it is difficult to expect penetration into the skin due to its high molecular weight and low solubility. In order to solve these problems, lipid-based liposomes of various types were developed to increase skin absorption. Therefore, in this study, we tried to increase the skin absorption rate by preparing transfersomes using surfactants as edge activators in existing liposomes. Liposome and transfersomes containing Span 80 and Tween 20, 60, 80, and 85, respectively, were prepared using a high-pressure homogenizer, and we evaluated the particle size, polydispersity index, zeta potential, and skin absorption rate. As a result, there was almost no change in the physical properties of particle size, polydispersity index and zeta potential from 25 ℃ to 60 d, and the particle size of transfersomes containing Tween 20, 60, and 80 increased after 60 d at 45 ℃. Madecassoside, main substances of the Centella asiatica extract was used as an standard and madecassoside was measured and calculated when measuring the skin absorption rate using Franz diffusion cells. As a result, formulations containing Tween 20 were the most, whereas formulations containing Span 80 were the least. According to the skin absorption coefficient (Kp) value, all formulations showed 'very fast', and the absorption rate was similar or greater than that of liposomes, except for formulations containing Span 80. Through this, it was confirmed that the larger the HLB value of the nonionic surfactant, the smaller the particle size of the transfersome, and the increased skin absorption rate due to the increased flexibility of the vesicle membrane. Through this study, transfersome using surfactant as an edge activator can be expected to solve local skin problems not only as a cosmetic raw material or product, but also by increasing skin absorption.

병풀추출물은 다양한 효능으로 인하여 화장품 원료로 많이 사용되지만, 분자량이 크고 용해도가 낮아 피부에의 흡수 효과를 기대하기 어렵다. 이러한 문제점을 해결하기 위하여 지질 기반 다양한 형태의 리포좀을 개발하여 피부흡수율을 높이고자 하였다. 이에 본 연구에서는 기존 리포좀에 edge activator로서 계면활성제를 사용하여 트렌스퍼좀을 제조함으로써 피부흡수율을 높이고자 하였다. 리포좀과 Span 80 및 Tween 20, 60, 80, 85를 각각 함유한 트렌스퍼좀을 high-pressure homogenizer를 이용하여 제조하였고, 입자크기, 다분산지수, 제타전위, 피부흡수율에 대하여 평가하였다. 그 결과, 25 ℃에서 60 d까지 입자크기, 다분산지수 및 제타전위의 물성변화가 거의 없었으며, 45 ℃에서는 60 d 경과 후에 Tween 20, 60, 80을 함유한 트렌스퍼좀의 입자크기가 증가하였다. Franz diffusion cell을 이용한 피부흡수율은 병풀추출물의 주요 성분 중 하나인 madecassoside를 지표 성분으로 사용하여 계산하였다. 그 결과, Tween 20을 함유한 제형에서 가장 흡수율이 높았으며, 반면에 Span 80을 함유한 제형에서 가장 적었다. 흡수계수(Kp) 값에 의하면 모든 제형에서 'very fast'로 나타났고, Span 80을 함유한 제형을 제외하고 리포좀보다 흡수 속도가 유사하거나 크게 나타났다. 이를 통하여 비이온성 계면활성제의 HLB 값이 클수록 트렌스퍼좀의 입자크기가 작았으며, 베시클 막의 유연성 향상으로 피부흡수율이 증가함을 확인하였다. 본 연구를 통해 edge activator로서 계면활성제를 사용한 트렌스퍼좀은 화장품 원료나 제품으로서뿐만 아니라 피부흡수율 증가로 피부의 국소적 문제 해결 가능성을 기대할 수 있다.

Keywords

References

  1. E. F. Bernstein, Y. Q. Chen, K. Tamai, K. J. Shepley, K. S. Resnik, H. Zhang, R. Tuan, A. Mauviel, and J. Uitto, Enhanced elastin and fibrillin gene expression in chronically photodamaged skin, J. Invest. Dermatol., 103(2), 182 (1994). 
  2. T. I. Hyeon and K. S. Yoon, Skin absorption and physical property of ceramide-added ethosome, J. Korean Applied Science and Technology, 38(3), 801 (2021). 
  3. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and ethosomes: mechanism of enhanced skin delivery, Int. J. Pharm., 322, 60 (2006). 
  4. E. Touitou, N. Datan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties, J. Control. Release, 65, 403 (2000). 
  5. M. J. Choi and H. I. Maibach, Elastic vesicles as topical/transdermal drug delivery systems, Int. J. Cosmet. Sci., 27, 211 (2005). 
  6. G. Cevc, Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery, Crit. Rev. Ther. Drug Carrier Syst., 13(3&4), 257 (1996). 
  7. B. Baroli, Penetration of nanoparticles and nanomaterials in the skin: fiction or reality?, J. Pharm. Sci., 99, 21 (2010). 
  8. H. AE Benson, Transfersomes for transdermal drug delivery, Expert. Opin. Drug. Deliv., 3(6), 727 (2006). 
  9. H. Chaudhary, K. Kohli and V. Kumar, Nano-transfersomes as a novel carrier for transdermal delivery, Pharm. Nanotechnol., 454, 367 (2013). 
  10. S. J, M. Pharm., P. Jain, M.S., R. B. U., M. Pharm, and N. K. Jain, Transfersomes - a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation, Drug. Dev. Ind. Pharm., 29(9), 1013 (2003). 
  11. S. Mahor, A. Rawat, P. K. Dubey, P. N. Gupta, K. Khatri. A. K. Goyal, and S.P. Vyas, Cationic transfersomes based topical genetic vaccine against hepatitis B, Int. J. Pharm., 340, 13 (2007) 
  12. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta, 1104, 266 (1992). 
  13. G. Cevc, D. Gebauer, J. Stieber, A. Schatzlein, and G. Blume, Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin, Biochim. Biophys. Acta, 1368, 201 (1998). 
  14. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: reviewing three decades of research, Int. J. Pharm., 332, 1 (2007). 
  15. Y. S. R. Elnaggar, W. M. El-Refaie, M. A. El-massik, and O. Y. Abdallah, Lecithin-based nanostructured gels for skin delivery: An update on state of art and rec ent applications, J. Control. Release, 180, 10 (2014). 
  16. M. M. A. Elasayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen, Pharmazie, 62, 133 (2007). 
  17. S. S. Jamil, Q. Nizami, and. M. Salam, Centella asiatica (Linn.), Urban a review, Nat. Prod. Radiance, 6(2), 158 (2007). 
  18. F. Pittella, R. C. Dutra, D. D. Junior, M. T. P. Lopes, and N. R. Barbosa, Antioxidant and cytotoxic activities of Centella asiatica (L) Urb., Int. J. Mol. Sci., 10, 3713 (2009). 
  19. M. K. Zainol, A. Abd-Hamid, S. Yusof, and R. Muse, Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban, Food Chem., 81, 575 (2003). 
  20. M. R. S. Zaidan, N. Rain, A. R. Badrul, A. Adlin, A. Norazah, and I. Zakiah, In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method, Trop. Biomed., 22(2), 165 (2005). 
  21. C. H. Jo, S. Y. Kim, and I. S. An, The improving effect of Centella asiatica extracts on erythema on scalp of aged 20-50's women, Kor. J. Aesthet. Cosmetol., 12(6), 921 (2014). 
  22. I. E. Orhan, Centella asiatica (L.) Urban: from traditional nedicine to modern medicine with neuroprotective potential, J. Evid. Based Complementary Altern. Med., 2012, 1 (2012). 
  23. W. Bylka, P. Znajdek-Awizen, E. Studzinska-Sroka, and M. Brzezinska, Centella asiatica in cosmetology, Postepy Dermatol. Alergol., 30(1), 46 (2013). 
  24. J. Lee, C. H. Myung, J. E. Lee, M. R. Jo, H. S. Kim, N. Y. Lee, H. Woo, J. You, H. Jo, and J. S. Hwang, Anti-inflammatory and moisturizing effect of Centella extracts fermented in Jeju lava water, J. Soc. Cosmet. Sci. Korea, 45(4), 363 (2019). 
  25. J. H. Ha, M. C. Kwon, Y. Kim, S. S. Jeong, M. H. Jeong, B. Hwang, and H. Y. Lee, Enhancement of immuno-modulatory of Centella asiatica L. Urban with edible polymer through nano-encapsulation process, Korean J. Medicinal Crop. Sci., 17(4), 257 (2009). 
  26. K. J. Kwon, S. J. Choi, and Y. Yoon, Improving effects of the cleanser containing Centella asiatica extracts and charcoal and pearl powder on the facial skin, Kor. J. Aesthet. Cosmetol., 10(3), 581 (2012). 
  27. O. T. Kim, M. Y. Kim, S. J. kim, Y. J. kim, K. S. Kim, J. C. Ahn, S. W. Kim, and B. Hwang, Seasonal variations of triterpene glycosides contents in the leaf of Centella asiatica (L.) Urban, Korean J. Medicinal Crop. Sci., 10(5), 375 (2002). 
  28. W. C. Griffin, Classification of surface-active agents by "HLB", J. Soc. Cosmet. Chem., 311 (1946). 
  29. W. C. Griffin, Calculation of HLB values of non-ionic surfactants, J. Soc. Cosmet. Chem., 249 (1954). 
  30. K. S. Yoon, Cosmetology, G. B. Jo, 56, Kuhminsa, Seoul (2021). 
  31. E. Seong, H. Heo, S. Oh, D. Kim, K. I. Jang, and J. Lee, Optimization of ultrasound-assisted extraction for triterpene compounds from Centella asiatica using response surface methodology, J. Korean Soc. Food Sci. Nutr., 50(3), 294 (2021). 
  32. S. J. Yang, T. Y. Kim, C. M. Lee, K. S. Lee, and K. S. Yoon, Study on the stability of biotin-containing nano-liposome, J. Soc. Cosmet. Sci., 46(2), 133 (2020). 
  33. C. Monton, C. Luprasong, J. Suksaeree, and T. Songsak, Validated high performance liquid chromatography for simultaneous determination of stability of madecassoside and asiaticoside in film forming polymeric dispersions, Rev. Bras. Farmacogn., 28, 289 (2018). 
  34. T. I. Hyeon and K. S. Yoon, Ethosome containing ceramide as a skin carrier of active ingredients, Curr. Drug. Deliv., 20(7), 927 (2023). 
  35. F. N. Marzulli, D. W. C. Brown, and H. I. Maibach, Techniques for studying skin penetration, Toxicol. Appl. Pharmacol., Supplement(3), 76 (1969). 
  36. E. Casals, A. M. Galan, G. Escolar, M. Gallardo, and J. Estelrich, Physical stability of liposomes bearing hemostatic activity, Chem. Phys. Lipids, 125, 139 (2003). 
  37. L. N. Ramana, S. Sethuraman, U. Ranga and U. M. Krishnan, Development of a liposomal nanodelivery system for nevirapine, J. Biomed. Sci., 57, 1 (2010). 
  38. J. Leng, S. U. Egelahaaf and M. E. Cates, Kinetic pathway of spontaneous vesicle formation, EPL, 59(2), 311 (2002). 
  39. E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60, 91 (2005). 
  40. A. Laouini, C. J. Maalej, I. L. Blouza, S. Sfar, C. Charcosset, and H. Fessi, Preparation, characterization and applications of liposomes: state of the art, J. Colloid Sci. Biotechnol., 1, 147 (2012). 
  41. M. Badran, K. Shalaby and A. Al-Omrani, Influence of the flexible liposomes on the skin deposition of a hydrophilic model drug, carboxyfluorescein: dependency on their composition, Sci. World J., 2012, 9 (2012). 
  42. M. A. Khan, J. Pandit, Y. Sultana, S. Sultanan, A. Ali, M. Aqil and M. Chauhan, Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study, Drug Deliv., 22(6), 795 (2015). 
  43. C. K. Song, P. Balakrishnan, C. K. Shim, S. J. Chung, S. Chong, and D. D. Kim, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation, Colloids Surf. B. Biointerfaces, 92, 299 (2012). 
  44. R. Albash, A. A. Abdelbary, H. Refai, and M. A. El-Nabarawi, Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation, Int. J. Nanomedicine, 14, 1953 (2019). 
  45. I. M. Abdulbaqi, Y. Darwis, R. A. Assi, and N. A. K. Khan, Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation, Drug. Des. Devel. Ther., 12, 795 (2018).