• Title/Summary/Keyword: flavin

Search Result 92, Processing Time 0.026 seconds

Critical Role of Glu175 on Stability and Folding of Bacterial Luciferase: Stopped-flow Fluorescence Study

  • Shirazy, Najmeh Hadizadeh;Ranjbar, Bijan;Hosseinkhani, Saman;Khalifeh, Khosrow;Madvar, Ali Riahi;Naderi-Manesh, Hossein
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.453-458
    • /
    • 2007
  • Bacterial luciferase is a heterodimeric enzyme, which catalyzes the light emission reaction, utilizing reduced FMN (FMNH2), a long chain aliphatic aldehyde and $O_2$, to produce green-blue light. This enzyme can be readily classed as slow or fast decay based on their rate of luminescence decay in a single turnover. Mutation of Glu175 in $\alpha$ subunit to Gly converted slow decay Xenorhabdus Luminescence luciferase to fast decay one. The following studies revealed that changing the luciferase flexibility and lake of Glu-flavin interactions are responsible for the unusual kinetic properties of mutant enzyme. Optical and thermodynamics studies have caused a decrease in free energy and anisotropy of mutant enzyme. Moreover, the role of Glu175 in transition state of folding pathway by use of stopped-flow fluorescence technique has been studied which suggesting that Glu175 is not involved in transition state of folding and appears as surface residue of the nucleus or as a member of one of a few alternative folding nuclei. These results suggest that mutation of Glu175 to Gly extended the structure of Xenorhabdus Luminescence luciferase, locally.

Plasma Concentrations of Clozapine and its Metabolites and FMO3 Variations in Korean Schizophrenic Patients (정신분열병 환자에서 Clozapine과 그 대사물들의 혈장농도 및 FMO3 유전자 변이)

  • Lee, Kyung-Hoon;Kim, Chul Eung
    • Korean Journal of Biological Psychiatry
    • /
    • v.13 no.3
    • /
    • pp.152-161
    • /
    • 2006
  • Objective : The relationship between the total daily dose of clozapine given and the plasma concentrations of clozapine and its metabolites(N-desmethylclozapine and clozapine N-oxide) and the effect of Glu158Lys (wild-type : Glu, 'H' ; variant : Lys, 'h') and Glu308Gly(wild-type : Glu, 'D' ; variant : Lys, 'd') variation in FMO3 gene on plasma concentrations of clozapine and its metabolites was studied in schizophrenic patients. Methods : Trough plasma concentrations of clozapine and its metabolites were measured in 34 schizophrenic patients receiving clozapine. The genetic variation of 'h' and 'd' in FMO3 were analyzed in 21 among 34 patients. Results : A linear relationship between the total daily dose of clozapine given(mg/kg body weight per day) and the plasma concentrations(nM) of clozapine was revealed by regression analysis(p<0.001) in the 23 patients receiving a constant daily dose of clozapine for 8 days. The plasma molar concentration ratios of clozapine N-oxide/clozapine in 8 subjects with 'hh' or 'Hh' alleles were not different from those in 6 subjects with 'HH' alleles and the plasma molar concentration ratios in 6 subjects with 'dd' or 'Dd' alleles were not different from those in 8 subjects with 'DD' alleles. Conclusion : The effect of Glu158Lys and Glu308Gly variation in FMO3 gene on clozapine metabolism could not be shown.

  • PDF

Enhanced Activity of Flavin-containing Monooxygenase in Human Subjects with High Body Mass Index and in Obese Mice Fed a High-fat Diet

  • Ko, Jeong-Hyeon;Lee, Tong-Joo;Park, Chang-Shin;Jang, Eun-Hee;Oh, Yun-Mi;Kang, Ju-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • The effect of obesity on the drug-metabolizing enzymes remains an important issue for clinician since obesity is a world wide epidemic problem. However, little is known about the effects of obesity on flavincontaining monooxygenase (FMO) production and activity. We show here for the first time that in vivo FMO activity determined by urinary ranitidine (RA) metabolites ratio in human, was higher in subjects with a high body mass index (BMI, kg/$m^2$, 21.97-30.32) than in those with an intermediate BMI (range 19.38-21.83). Moreover, there was a significant correlation between FMO activity and BMI in 209 subjects. In high fat diet-induced obese mice, we also observed that the hepatic expression of FMO (225% of lean mice) and the activity measured by the RA Noxidation rate ($513{\pm}58.1$ vs. $349{\pm}66.0$ pmol/hr per mg protein) were significantly higher than in lean mice fed a control diet. Unknown factors rather than leptin or insulin appeared to regulate the hepatic FMO production. Thus, FMO activity may be increased in obese or overweight individuals. Moreover, the regulation of FMO activity in subjects with morbid obesity, with or without complications and its clinical implications, should be investigated further.

Enhanced Production of Benzoylformate Reductase in Enterococcus faecalis under Oxidative Stress Established by Natural Electron Carriers

  • Baik, Sang-Ho;Cho, Pan-Ki;Kim, Mee-Hae;Yun, Sei-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.104-109
    • /
    • 2003
  • Enhancement of the production of benzoylformate reductase (BFR) was attempted under oxidative stress established by natural electron carriers. -lipoic acid (LA), flavin adenine dinucleotide (FAD), and ubiquinone (UQ) did not inhibit growth of E. faecalis when their concentrations were as high as $10{\mu}M$, while $H_2O_2$ and methyl viologen ($MV^2+$) inhibited the bacterial growth. BFR activity in the bacterial extract had increased rapidly after 1 h of cultivation after the addition of $4{\mu}M$ of natural electron carriers, and the activity was maintained during further cultivation. BFR activity of the cells treated with the natural electron carriers was $40\%$ higher than that of the control. In the presence of $4{\mu}M\;H_2O_2\;and\;MV^2+$, BFR activity increased, reaching the highest activity at about 5 h cultivation, and then decreased with further cultivation. It seems that natural electron carriers not only stimulate the induction of BFR, but also stabilize the enzyme. BFR was hardly affected by LA, FAD, and UQ, while $H_2O_2\;and\;MV^2+$ inactivated the crude enzyme. The decrease of BFR activity in the presence of $H_2O_2\;and\;MV^2+$ might be ascribed to inactivation of the enzyme by the oxidants.

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.

Enhanced Purification of Recombinant Rat NADPH-P450 Reductase by Using a Hexahistidine-Tag

  • Park, Hyoung-Goo;Lim, Young-Ran;Han, Songhee;Jeong, Dabin;Kim, Donghak
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.983-989
    • /
    • 2017
  • NADPH-P450 reductase (NPR) transfers electrons from NADPH to cytochrome P450 and heme oxygenase enzymes to support their catalytic activities. This protein is localized within the endoplasmic reticulum membrane and utilizes FMN, FAD, and NADPH as cofactors. Although NPR is essential toward enabling the biochemical and pharmacological analyses of P450 enzymes, its production as a recombinant purified protein requires a series of tedious efforts and a high cost due to the use of $NADP^+$ in the affinity chromatography process. In the present study, the rat NPR clone containing a $6{\times}$ Histidine-tag (NPR-His) was constructed and heterologously expressed. The NPR-His protein was purified using $Ni^{2+}$-affinity chromatography, and its functional features were characterized. A single band at 78 kDa was observed from SDS-PAGE and the purified protein displayed a maximum absorbance at 455 nm, indicating the presence of an oxidized flavin cofactor. Cytochrome c and nitroblue tetrazolium were reduced by purified NPR-His in an NADPH-dependent manner. The purified NPR-His successfully supported the catalytic activities of human P450 1A2 and 2A6 and fungal CYP52A21, yielding results similar to those obtained using conventional purified rat reductase. This study will facilitate the use of recombinant NPR-His protein in the various fields of P450 research.

Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice

  • Qiu, Liang;Yang, Dong;Tao, Xueying;Yu, Jun;Xiong, Hua;Wei, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1491-1499
    • /
    • 2017
  • Trimethylamine N-oxide (TMAO), which is transformed from trimethylamine (TMA) through hepatic flavin-containing monooxygenases, can promote atherosclerosis. TMA is produced from dietary carnitine, phosphatidylcholine, and choline via the gut microbes. Previous works have shown that some small molecules, such as allicin, resveratrol, and 3,3-dimethyl-1-butanol, are used to reduce circulating TMAO levels. However, the use of bacteria as an effective therapy to reduce TMAO levels has not been reported. In the present study, 82 isolates were screened from healthy Chinese fecal samples on a basal salt medium supplemented with TMA as the sole carbon source. The isolates belonged to the family Enterobacteriaceae, particularly to genera Klebsiella, Escherichia, Cronobacter, and Enterobacter. Serum TMAO and cecal TMA levels were significantly decreased in choline-fed mice treated with Enterobacter aerogenes ZDY01 compared with those in choline-fed mice treated with phosphate-buffered saline. The proportions of Bacteroidales family S24-7 were significantly increased, whereas the proportions of Helicobacteraceae and Prevotellaceae were significantly decreased through the administration of E. aerogenes ZDY01. Results indicated that the use of probiotics to act directly on the TMA in the gut might be an alternative approach to reduce serum TMAO levels and to prevent the development of atherosclerosis and "fish odor syndrome" through the effect of TMA on the gut microbiota.

Ferric iron reductase activity of LuxG from Photobacterium leiognathi (Photobacterium leiognathi LuxG 단백질의 철(III) 이온 환원 효소 활성도)

  • Lee, Eui Ho;Nam, Ki Seok;Lee, Seon Kwang;Oh, Eugeney;Lee, Chan Yong
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.495-499
    • /
    • 2016
  • In order to identify the biochemical characteristics of LuxG, the luxG gene from bioluminescence bacteria of Photobacterium leiognathi ATCC 25521 was isolated by PCR-Amplification and inserted into pQE30 vector containing the T5 promoter and 6X His-tag system. The resulting recombinant plasmid was transformed into Escherichia coli to over-express the luxG gene and purify the gene product. The purified LuxG protein demonstrated ferric iron reductase activity and the kinetic parameters of $K_m$ and $V_{max}$ for FMN as well as the NADPH substrates of ferric iron reductase were determined, respectively.

Effect of Cigarette Smoke Exposure on MPTP Metabolism in the Liver of Mice

  • Heung Bin Lim;Ja Young Moon;Hyung Ok Sohn;Young Gu Lee;Dong Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Numerous studies have demonstrated a negative association between cigarette smoking and Parkinson's disease. The present study was undertaken to investigate whether chronic exposure of mice to cigarette smoke a(footed the metabolism of 1-methyl-1113,6-tetrahydro-pyridine (MPTP) by cytochrome P4SO (P-450) or flavin-containing monooxygenase (FMO) in the hepatic microsomes of C57BL6/J mice. Adult male C57BL6/J mice were exposed to mainstream smoke generated from 15 cigarettes for 10 min a day and 5 day per week for 6 weeks. MPTP (10 mg/kg body weight) was administered to mice by subcutaneous injection for 6 consecutive days. Microsolnal P-450 content was increased by MPTP, smoke exposure, or both, but NADPH cytochrome P-450 reductase activity was rather decreased by the same treatments. The activities of benzo(a)pyrene hydroxylase, 7-ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase were significantly increased by the exposure of cigarette smoke, but were not or little affected by MPTP treatment. Benzphetamine N-demethylase activity was not affected either by MPTP treatment or by cigarette smoke exposure, but it was significantly increased by the combined MPTP treatment with cigarette smoke exposure, showing their synergic effect for the induction of the enzyme activity. Interestingly, in vitro studies of hepatic FMO and P-450 system both O-oxygenation and N-demethylation of MPTP were increased in the smoke-exposed or in the MPTP-treated mice. These results suggest that the enhancement in the N-demethylation as well as O-deethylation of P-450 system and in the N-oxygenation of FMO activity by cigarette smoke exposure in mouse liver may contribute to attenuating the neurotoxic effects of MPTP on the nigrostriatal dopaminergic neurons.

  • PDF

Functional Expression and Characterization of Recombinant NADPH-P450 Reductase from Malassezia globosa

  • Lee, Hwa-Youn;Park, Hyoung-Goo;Lim, Young-Ran;Lee, Im-Soon;Kim, Beom-Joon;Seong, Cheul-Hun;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.141-146
    • /
    • 2012
  • Malassezia globosa is a common pathogenic fungus that causes skin diseases including dandruff and seborrheic dermatitis in humans. Analysis of its genome identified a gene (MGL_1677) coding for a putative NADPH-P450 reductase (NPR) to support the fungal cytochrome P450 enzymes. The heterologously expressed recombinant M. globosa NPR protein was purified, and its functional features were characterized. The purified protein generated a single band on SDS-PAGE at 80.74 kDa and had an absorption maximum at 452 nm, indicating its possible function as an oxidized flavin cofactor. It evidenced NADPH-dependent reducing activity for cytochrome c or nitroblue tetrazolium. Human P450 1A2 and 2A6 were able to successfully catalyze the O-deethylation of 7-ethoxyresorufin and the 7-hydroxylation of coumarin, respectively, with the support of the purified NPR. These results demonstrate that purified NPR is an orthologous reductase protein that supports cytochrome P450 enzymes in M. globosa.