References
- Sekirov I, Russell SL, Antunes LC, Finlay BB. 2010. Gut microbiota in health and disease. Physiol. Rev. 90: 859-904. https://doi.org/10.1152/physrev.00045.2009
- Lee WJ, Hase K. 2014. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10: 416-424. https://doi.org/10.1038/nchembio.1535
- Tremaroli V, Backhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-249. https://doi.org/10.1038/nature11552
- Bennett BJ, Vallim TQDA, Wang Z, Shih DM, Meng Y, Gregory J, et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17: 49-60. https://doi.org/10.1016/j.cmet.2012.12.011
- Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57-65. https://doi.org/10.1038/nature09922
- Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19: 576-585. https://doi.org/10.1038/nm.3145
- Tang WHW, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368: 1575-1584. https://doi.org/10.1056/NEJMoa1109400
- Ulman CA, Trevino JJ, Miller M, Gandhi RK. 2014. Fish odor syndrome: a case report of trimethylaminuria. Dermatol. Online J. 20: 21260.
- Brugere JF, Borrel G, Gaci N, Tottey W, O'Toole PW, Malpuech-Brugere C. 2014. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5: 5-10. https://doi.org/10.4161/gmic.26749
- Kuka J, Liepinsh E, Makrecka-Kuka M, Liepins J, Cirule H, Gustina D, et al. 2014. Suppression of intestinal microbiotadependent production of pro-atherogenic trimethylamine Noxide by shifting L-carnitine microbial degradation. Life Sci. 117: 84-92. https://doi.org/10.1016/j.lfs.2014.09.028
- Wu W-K, Panyod S, Ho C-T, Kuo C-H, Wu M-S, Sheen L-Y. 2015. Dietary allicin reduces transformation of L-carnitine to TMAO through impact on gut microbiota. J. Funct. Foods 15: 408-417. https://doi.org/10.1016/j.jff.2015.04.001
- Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163: 1585-1595. https://doi.org/10.1016/j.cell.2015.11.055
- Chen ML, Yi L, Zhang Y, Zhou X, Ran L, Yang J, et al. 2016. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7: e02210-e02215.
- Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM, et al. 2015. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 6: 6498. https://doi.org/10.1038/ncomms7498
- Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, et al. 2015. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J. Lipid Res. 56: 22-37. https://doi.org/10.1194/jlr.M051680
- Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. 2015. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290: 5647-5660. https://doi.org/10.1074/jbc.M114.618249
- Mejean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol. Microbiol. 11: 1169-1179. https://doi.org/10.1111/j.1365-2958.1994.tb00393.x
- Ocque AJ, Stubbs JR, Nolin TD. 2015. Development and validation of a simple UHPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. J. Pharm. Biomed. Anal. 109: 128-135. https://doi.org/10.1016/j.jpba.2015.02.040
- Romano KA, Vivas EI, Amador-Noguez D, Rey FE. 2015. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6: e02481.
- Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10: 57-59. https://doi.org/10.1038/nmeth.2276
- Edgar RC. 2013. UPARSE: highly accurate OTUs equences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
- Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
- Suchodolski JS, Foster ML, Sohail MU, Leutenegger C, Queen EV, Steiner JM, Marks SL. 2015. The fecal microbiome in cats with diarrhea. PLoS One 10: e0127378. https://doi.org/10.1371/journal.pone.0127378
- Randrianarisoa E, Lehn-Stefan A, Wang X, Hoene M, Peter A, Heinzmann SS, et al. 2016. Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Sci. Rep. 6: 26745. https://doi.org/10.1038/srep26745
- Kim SG, Bae HS, Oh HM, Lee ST. 2003. Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine. FEMS Microbiol. Lett. 225: 263-269. https://doi.org/10.1016/S0378-1097(03)00530-5
- Mewies M, Packman LC, Mathews FS, Scrutton NS. 1996. Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine. Biochem. J. 317: 267-272. https://doi.org/10.1042/bj3170267
- Liffourrena AS, Lucchesi GI. 2014. Identification, cloning and biochemical characterization of Pseudomonas putida A (ATCC 12633) monooxygenase enzyme necessary for the metabolism of tetradecyltrimethylammonium bromide. Appl. Biochem. Biotechnol. 173: 552-561. https://doi.org/10.1007/s12010-014-0862-x
- Kasprzak AA, Papas EJ, Steenkamp DJ. 1983. Identity of the subunits and the stoichiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase. Biochem. J. 211: 535-541. https://doi.org/10.1042/bj2110535
-
Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, et al. 2014.
${\gamma}$ -Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20: 799-812. https://doi.org/10.1016/j.cmet.2014.10.006 - Denby KJ, Rolfe MD, Crick E, Sanguinetti G, Poole RK, Green J. 2015. Adaptation of anaerobic cultures of Escherichia coli K-12 in response to environmental trimethylamine-Noxide. Environ. Microbiol. 17: 2477-2491. https://doi.org/10.1111/1462-2920.12726
- Hoyles L, Jimenez-Pranteda ML, Chilloux J, Myridakis A, Gauguier D, Nicholson JK, et al. 2015. Reduction of trimethylamine N-oxide to trimethylamine by the human gut microbiota: supporting evidence for 'metabolic retroversion'. Poster in Conference on Exploring Human Host-Microbiome Interactions in Health and Disease. Imperial College of London.
- Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC. 2011. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc. Natl. Acad. Sci. USA 108: 17791-17796. https://doi.org/10.1073/pnas.1112928108
- Ussher JR, Lopaschuk GD, Arduini A. 2013. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis 231: 456-461. https://doi.org/10.1016/j.atherosclerosis.2013.10.013
- Moller B, Hippe H, Gottschalk G. 1986. Degradation of various amine compounds by mesophilic clostridia. Arch. Microbiol. 145: 85-90. https://doi.org/10.1007/BF00413032
- Zhu Y, Jameson E, Crosatti M, Schafer H, Rajakumar K, Bugg TD, Chen Y. 2014. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 111: 4268-4273. https://doi.org/10.1073/pnas.1316569111
Cited by
- Lactobacillus plantarumZDY04 exhibits a strain-specific property of lowering TMAOviathe modulation of gut microbiota in mice vol.9, pp.8, 2017, https://doi.org/10.1039/c8fo00349a
- Trimethylamine- N -Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide vol.23, pp.3, 2017, https://doi.org/10.3390/molecules23030549
- Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target vol.10, pp.None, 2017, https://doi.org/10.3389/fphar.2019.01360
- Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease vol.3, pp.1, 2019, https://doi.org/10.1002/hep4.1284
- Bacillus amyloliquefaciens SC06 Protects Mice Against High-Fat Diet-Induced Obesity and Liver Injury via Regulating Host Metabolism and Gut Microbiota vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01161
- Effects of Probiotic Supplementation on Trimethylamine-N-Oxide Plasma Levels in Hemodialysis Patients: a Pilot Study vol.11, pp.2, 2019, https://doi.org/10.1007/s12602-018-9411-1
- The Microbial Metabolite Trimethylamine N-Oxide Links Vascular Dysfunctions and the Autoimmune Disease Rheumatoid Arthritis vol.11, pp.8, 2019, https://doi.org/10.3390/nu11081821
- The Potential of Probiotics in the Prevention and Treatment of Atherosclerosis vol.64, pp.4, 2017, https://doi.org/10.1002/mnfr.201900797
- Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide vol.128, pp.5, 2020, https://doi.org/10.1111/apm.13038
- A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression vol.9, pp.5, 2017, https://doi.org/10.3390/jcm9051369
- The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection vol.4, pp.7, 2017, https://doi.org/10.1002/smtd.201900604
- The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases vol.12, pp.8, 2017, https://doi.org/10.3390/nu12082340
- Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development vol.11, pp.8, 2017, https://doi.org/10.1039/d0fo01237h
- Does intestinal dysbiosis contribute to an aberrant inflammatory response to severe acute respiratory syndrome coronavirus 2 in frail patients? vol.79, pp.None, 2017, https://doi.org/10.1016/j.nut.2020.110996
- Gut microbial composition in patients with atrial fibrillation: effects of diet and drugs vol.36, pp.1, 2017, https://doi.org/10.1007/s00380-020-01669-y
- Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets vol.13, pp.2, 2017, https://doi.org/10.3390/toxins13020142
- Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD vol.8, pp.None, 2017, https://doi.org/10.3389/fmolb.2021.733507
- Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health vol.20, pp.4, 2017, https://doi.org/10.1111/1541-4337.12764
- Gut Microbiome-Derived Metabolite Trimethylamine N-Oxide Induces Aortic Stiffening and Increases Systolic Blood Pressure With Aging in Mice and Humans vol.78, pp.2, 2017, https://doi.org/10.1161/hypertensionaha.120.16895
- The Role of Gut Microbiota on Cholesterol Metabolism in Atherosclerosis vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22158074
- Molecular Identification and Selection of Probiotic Strains Able to Reduce the Serum TMAO Level in Mice Challenged with Choline vol.10, pp.12, 2017, https://doi.org/10.3390/foods10122931