• 제목/요약/키워드: flavin

검색결과 92건 처리시간 0.034초

사람 Flavin-containing Monooxygenase 3의 Thiocarbamide 화합물의 기질 크기에 따른 효소활성에 관한 연구 (Effect of Substrate Size on Activities of Thiocarbamides with the Human Flavin-containing Monooxygenase 3)

  • 김영미
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권2호
    • /
    • pp.97-102
    • /
    • 2001
  • FMOs (Flavin-containing monooxygenases, EC1.14.13.8)는 다양한 종류의 식품, 약물이나 기타 외래 유래물질 (xenobiotics)를 산화시키는 NADPH와 $O_2$ 의존성 약물대사효소이다. 현재까지 5종의 subfamily가 존재하는 것으로 보고되어 있으며 그 중 잘 알려진 FMO3는 대표적 인 subfamily로서 주로 간에 존재한다 사람FMO에 관한 연구는 최근 들어 활성화되기 시작했으며 질소, 황이나 인 등을 포함하는 친핵성 (nucleophilic) 화합물이 대표적인 기질로 보고되어 있다. 본 연구에서는 thiocarbamide를 포함하고 있는 화합물에 대한 사람의 FMO3의 기질 특이성을 알아보고자 하였다. 사람 FMO3를 baculovirus system을 이용하여 대량으로 발현시킨 후 그 microsomal FMO3를 분리하여 thiocholine assay를 시행하였다. 그 결과 methimazole, thiourea, and phenylthiourea는 낮은 $K_{m}$ (4-10$\mu$M)간을 갖는 반면, 이보다 기질의 크기가 큰 1 ,3-diphenylthiourea, 1, 3-bis (3, 4-dichlorophenyl)-2-thiourea, 1, 1-dibenzyl-3-phenol-2-thiourea에서는 효소활성이 나타나지 않았다. 이는 사람 fM01과 비교하여 볼 때 큰 차이는 없었으며, 다른 pig, guinea pig, rat, rabbit에서 보다 받아들일 수 있는 기질의 크기가 더 제한적임을 알 수 있었다.

  • PDF

리보플라빈 결핍이 쥐간의 미토콘드리아의 플라빈 펩티드와 관련된 효소 활성에 미치는 영향 (Riboflavin Status Influences the Biosynthesis of Flavin Peptides and Related Enzyme Activities in Rat Liver Mitochondria)

  • 신숙;김재영;박인국
    • 한국동물학회지
    • /
    • 제38권4호
    • /
    • pp.498-504
    • /
    • 1995
  • 리보플라빈 결핍이 쥐간의 미토콘드리아의 플라빈 펩티드 합성, MAO, 숙신산 탈수소 효소 및 아세틸콜린 에스테라아제 활성 그리고 에피네프린가 노르에피네프린 함량에 미치는 영향을 조사하였다. 미토콘드리아내 탐지된 14C-리보플라빈의 방사선 함량과 트립신-가수분해 및 트립신-비가수분해 플라빈 펩티드의 농도의 증가는 리보플라빈 결핍시 현저히 나타났다. 미토콘드리아내 합성율은 2주째에 160% 이상으로 나타났다. MAO와 숙신산 탈수소 효소 활성은 리보플라빈 상태에 따라 현저히 감소하였으나, 아세틸콜린에스테라아제는 영향을 받지 않았다. 에피네프린과 노르에피네프린 함량도 현저히 감소하는 것으로 나타났다. 쥐간의 미토콘드리아내 플라빈 펩티드 합성, MAO, 숙신산 탈수소 효소 활성, 카테콜라민 농도는 리보플라빈 결핍상태와 특히 그 지속기간에 따라 변화하였다.

  • PDF

Estimation of Human Flavin-containing Monooxygenases Activity(FMO1) in the Baculovirus Expression Vector System by using S-oxidation of Methimazole

  • Kim, Young-Mi
    • 한국식품위생안전성학회지
    • /
    • 제14권4호
    • /
    • pp.415-421
    • /
    • 1999
  • The flavin-containing monooxygenases (FMOs) (EC 1.14. 13.8) are NADPH-dependent flavoenzymes that catalyze oxidation of soft nucleophilic heteroatom centers in a range of structurally diverse compounds including foods, drugs, pesticides, and other xenobiotics. In humans, FMOl appears to be the predominant form expressed in human fetal liver. cDNA-expressed human FMO and human liver microsomal FMO have been observed to N- and S-oxy-genate nucleophilic nitrogen- and sulfur-containing drugs and chemicals, respectively. In the present study, FMOl can be expressed in the baculovirus expression vector system at level of 2.68 nmol FMOl/mg of membrane protein. This isoform was examined for its capacity to metabolize methimazole to its S-oxide using thiocholine assay. Kinetic studies of its S-oxide by recombinant human FMO1 result in Km of 7.66 $\mu$M and Vmax of 17.79 nmol/min/mg protein.

  • PDF

Flavin mononucleotide를 탈리기로한 백금 (II) 착체의 합성과 그 항암활성 (Synthesis of Pt(II) Complexes containing Flavin mononucleotide as Leaving Ligand and their Anticancer Activity)

  • 권영이;황규자
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.762-770
    • /
    • 1999
  • A series of vitamin-containing Pt(II) complexes of the type [Pt (FMN) (L)] (FMN=flavin mononucleotide, L=ethylenediamine, 1,3-propanediamine, 1,4-bu-tanediamine) was synthesizd and characterized by IR, electronic absorption, elemental analysis and FAB=Mass. The coordination sites of FMN to Pt(II) ions were determined to be N(5) and O(6) with resultant chelate ring formation. Theses compounds have much better water solubility (30-35 mg/ml) than cisplatin (1 mg/ml). The anticancer activity of this vitamin-containing Pt(II) series was investigated by MTT assay against mouse and human leukemia cell lines in vitro. Among these compounds, FMN (1,4-butanediamine) Pt(II) having seven-membered ring structure as amine ligand showed moderate anticancer activity.

  • PDF

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • 제29권3호
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF

Thiobenzamide S-oxidation in Perfused Rat Liver: Ex Vivo Determination of Hepatic Flavin-Containing Monooxygenase Activity

  • Chung, Woon-Gye;Roh, Hyung-Keun;Cha, Young-Nam
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권5호
    • /
    • pp.591-595
    • /
    • 1997
  • An ex vivo assay determining the flavin-containing monooxygenase (FMO) activity in perfused rat liver has been developed by assessing the rate of thiobenzamide S-oxide (TBSO) formation from the infused thiobenzamide (TB). The hepatotoxicity by TB or TBSO was not a critical factor for maintaining the FMO activity for up to 50 min. The FMO activity expressed in nmoles TBSO produced/g liver/min was the same for the recycling and non-recycling perfusion. This implies that reduction of the oxidized TBSO back to the parent compound (TB) is negligible. Hydrolysis of the collected perfusates with either ${\beta}-glucuronidase$ or arylsulfatase did not increase the TBSO level and thus, TBSO does not appear to undergo conjugation either to glucuronide or sulfate esters. Thus, measuring the rate of TB S-oxidation in the isolated perfused liver with 1 mM TB for 50 min provides a useful tool for evaluation of the hepatic FMO activity in the absence of hepatic necrosis and without the interferences caused by further conjugation or back reduction of the TBSO to the parent TB.

  • PDF

Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability

  • Tingting Lin;Yuanyuan Ge;Qing Gao;Di Zhang;Xiaofeng Chen;Yafang Hu;Jun Fan
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1681-1691
    • /
    • 2023
  • Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.