A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja (Environmental Engineering Department, Dongseo University) ;
  • Lim, Woon-Ki (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • Received : 1996.02.13
  • Published : 1996.05.31

Abstract

An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

Keywords

References

  1. Carbohydr. Res. v.213 Alroy, J.;De Gasperi, R.;Warren, C.D. https://doi.org/10.1016/S0008-6215(00)90611-6
  2. Arch. Biochem. Biophys. v.238 Armstrong, J.M.;Newman, J.D. https://doi.org/10.1016/0003-9861(85)90207-3
  3. J. Cell Biol. v.92 Bergeron, J.M.;Rachubinski, R.A.;Sikstrom, R.A.;Posner, B.I.;Paiement, J. https://doi.org/10.1083/jcb.92.1.139
  4. Anal. Biochem. v.117 Chang, P.L.;Rosa, N.E.;Davidson, R.G. https://doi.org/10.1016/0003-2697(81)90795-8
  5. J. Cell Biol. v.101 Chen, J.W.;Murphy, T.L.;Willingham, M.G.;Pastan, I.;August, J.T. https://doi.org/10.1083/jcb.101.1.85
  6. Arch. Biochem. Biophys. v.203 Chung, C.H.;Elliot, R.L.;Mego, J.L. https://doi.org/10.1016/0003-9861(80)90175-7
  7. Biochim. Biophys. Acta. v.30 Deluca, C.;Kaplan, N.O. https://doi.org/10.1016/0006-3002(58)90233-6
  8. Proc. Natl. Acad. Sci. USA v.80 Dickson, R.B.;Beguinot, L.;Hanover, J.A.;Richert, N.D.;Willingham, M.C.;Pastan, I. https://doi.org/10.1073/pnas.80.17.5335
  9. Biochim. Biophys. Acta. v.52 Engstrom, L. https://doi.org/10.1016/0006-3002(61)90901-5
  10. J. Biol. Chem. v.66 Fiske, C.H.;Subbarow, Y.
  11. Biochim. Biophys. Acta. v.1270 Gieselmann, V. https://doi.org/10.1016/0925-4439(94)00075-2
  12. FEBS Lett. v.13 Goldstone, A.;Konecny, P.;Koenig, H. https://doi.org/10.1016/0014-5793(71)80667-1
  13. Proc. Natl. Acad. Sci. USA v.74 Herzog, V.;Farquhar, M.G. https://doi.org/10.1073/pnas.74.11.5073
  14. J. Biol. Chem. v.265 Klionsky, D.J.;Emr, S.D.
  15. J. Biol. Chem. v.182 Komberg, A.;Pricer, W.E.
  16. Arch. Biochem. Biophys. v.111 Kumar, S.A.;Appaji, R.N.;Vaidyanathan, C.S. https://doi.org/10.1016/0003-9861(65)90246-8
  17. J. Cell Biol. v.37 Leighton, F.;Poole, B.;Beaufay, H.;Bauhiun, P.;Coffey, J.W.;Fowler, S.;De Duve, C.
  18. J. Biol. Chem. v.260 Lemansky, P.;Gieselmann, V.;Hasilik, A.;Von Figura, K.
  19. J. Cell Biol. v.100 Lewis, V.;Green, S.A.;Marsh, M.;Vihko, P.;Helenius, A.;Mellman, I. https://doi.org/10.1083/jcb.100.6.1839
  20. Biochem. J. v.183 Lindahl, R. https://doi.org/10.1042/bj1830055
  21. J. Cell. Biol. v.102 Lippincott-Schwartz, J.;Fambrough, D.M. https://doi.org/10.1083/jcb.102.5.1593
  22. Clin. Biochem. v.28 Mahuran, D.J. https://doi.org/10.1016/0009-9120(95)00003-R
  23. Fed. Proc. v.44 Murray, G.J.;Jonsson, I.V.;Sorrell, S.H.;Ginns, E.I.;Tager, J.M.
  24. Biochem. J. v.177 Newby, A.C.;Chrambach, A. https://doi.org/10.1042/bj1770623
  25. Arch. Biochem. Biophys. v.123 Ragab, M.H.;Brightwell, R.;Tappel, A.L. https://doi.org/10.1016/0003-9861(68)90117-3
  26. J. Cell Biol. v.99 Reggio, H.;Bainton, D.;Harms, E.;Coudrier, E.;Louvard, D. https://doi.org/10.1083/jcb.99.4.1511
  27. Anal. Biochem. v.150 Smith, P.S.;Krolm, R.I.;Hermanson, G.T.;Mallia, A.K.;Gartner, F.H.;Provenzano, M.D.;Fujimoto, E.K.;Goeke, N.M.;Olson, B.J.;Klenk, D.C. https://doi.org/10.1016/0003-2697(85)90442-7
  28. J. Cell Biol. v.96 Steinmann, R.M.;Mellman, I.S.;Muller, W.A.;Cohn, Z.A. https://doi.org/10.1083/jcb.96.1.1
  29. Arch. Int. Physiol. Biochem. v.72 Trouet, A.
  30. Ann. Rev. Biochem. v.55 Von Figura, K.;Hasilik, A. https://doi.org/10.1146/annurev.bi.55.070186.001123
  31. Lysosomes, Ciba Foundation Symposium Wattiaux, R.;Wibbo, M.;Bandhuin, P.;De Reuck, A.V.S.(ed.);Cameron, M.P.(ed.)
  32. J. Biochem. v.43 Yamawaki, S. https://doi.org/10.1093/oxfordjournals.jbchem.a126671