• Title/Summary/Keyword: flat joint

Search Result 174, Processing Time 0.023 seconds

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Effect of Contact Pressure on the Variations in Coefficients of Friction Between Porcine Knee Joint Cartilage and Co-Cr Alloy in a Repeat Pass Sliding Motion (반복 회전운동에서 코발트 크롬 합금과 미끄럼 접촉하는 돼지 무릎 관절연골의 접촉압력이 마찰계수 변화에 미치는 영향)

  • Lee, Kwon-Yong;Kim, Hwan;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.231-235
    • /
    • 2009
  • In this study, the influence of contact pressure on the variation in coefficients of friction between porcine knee joint cartilage and Co-Cr alloy in a repeat pass sliding motion was investigated. Flat-ended cartilage pin specimens(9 mm diameter, 8 mm long) were prepared from porcine(6 months old) knee joints by a drill-type punch. Friction tests were conducted by using a pin-on-disk type friction tester for an hour in PBS lubricated condition under the contact pressures of 0.5, 1 and 2 MPa with 50 mm distance per a cycle at ambient condition. As a result, coefficients of friction increased as the test duration increased for all contact pressures. The maximum coefficients of friction were 0.082, 0.06 and 0.098 for 0.5, 1, and 2 MPa, respectively. It showed that coefficients of friction of porcine knee joint cartilage against Co-Cr alloy depended on the level of contact pressure and related to squeeze film lubrication mechanism.

Effect of Scapulothoracic Joint Movement and Resistance Training Intensity on Shoulder Complex Muscle Activation during Bench Press Exercise (벤치 프레스 운동 시 하중에 따른 어깨가슴관절의 움직임이 어깨복합체 근 활성도에 미치는 영향)

  • Kim, Yoon-Hwan;Lee, Ki-Kwang;Lee, Man-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2013
  • The purpose of this study was to investigate the scapulothoracic joint movement between different weight bearing contributing to effective bench press exercise. Ten male subjects participated in this study. All subjects were tested on the flat bench press machine which modified weight (50% and 70% of 1RM) and subjects were performed two different conditions(none protraction condition and protraction condition). Weight bar height and vertical velocity, EMG activation was measured using 3D motion capture system and wireless EMG analysis system. As the results, none protraction condition showed that it is more concentrate better pectoralis major muscle activation than protraction condition and middle pectoralis major, anterior deltoid and triceps brachii was significant higher integrated EMG in 70% of 1RM condition. In conclusion, limited scapulothoracic joint movement was more effective activated pectoralis major muscle all the weight through, while we could not find that it was not affected integrated EMG on eight muslces related to shoulder complex between scapulothracic joint movement conditions.

Hysteretic Behavior of Slab-Column Joint Using Bended Type Shear Reinforcement (절곡형 전단보강근을 사용한 슬래브-기둥 접합부의 이력 거동)

  • Lee, Hyun-Ho;Lee, Do-Bum;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2006
  • From the development of residential flat plate system, continuously bended shear reinforcement is developed for the prevention of punching shear. To know the punching shear capacity of developed shear reinforcement in slab-column joint, structural test is performed. The testing parameters are shear reinforcement types, such as no reinforcement, bended shear reinforcement, and head stud reinforcement. To verify the lateral capacity, cyclic load is applied under the constant vertical load condition. The results of tests are compared to as global displacement, slab-column joint strength. From the test results, the resisting capacity of developed shear reinforcement system has a good performance in the story drift ratio.

Study on Change of the Flatfoot's Ankle Angle in Sagittal plane before and after Wearing FFO (기능성 발보조기 착용 전후의 시상면의 편평족 발목각도 변화에 관한 연구)

  • Park, K.Y.;Park, S.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • The foot performs an important function in supporting the body and keeping body balance. An abnormal walking habit breaks the balance of the human body as well as the normal function of the foot. The influence of a flatfoot(pes planus) occupies a considerable portion of the various causes resulting in the wrong walking habit. But, little studies has been done by the functional foot orthotics for the flat foot. The object of this study, therefore, is to propose a new approach method to reveal the effects of the improvement of the foot function by using orthotics. The essential point of this study is to measure and analyze the change of ankle angle in the sagittal plane for flat foot subjects wearing the orthotics. Before and after wearing the functional orthotics, the gait analysis of flat foot subjects was conducted in three experimental aspects : the change of ankle angle, the change of the total Ankle ROM and the difference of left & right ankle angle in the sagittal plane. 1. The average ankle angle differences of before-and-after wearing the orthotics have declined like this; left : $2.71^{\circ}$, right: $1.91^{\circ}$ (p<0.05). 2. Total ankle ROM also showed decrease in both sides while the left side's is rather slight; left : $0.57^{\circ}$, right : $2.07^{\circ}$ (p<0.05). 3. The difference of left and right ankle angle in the sagittal plane decreased by $0.71^{\circ}$ (p<0.05). In result, it is confirmed that the functional foot orthotics have a significant effect on mechanical movement of ankle joint for flat foot. it is expected that this paper will be further studied and improved as a practical estimation method in the research on the effect of foot-orthotics.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Hysteretic Behavoir of Flat Plate System Using Rebar Type Shear Reinforcement (철근형 전단보강근을 사용한 플랫 플레이트 시스템의 이력 거동)

  • Lee, Hyun-Ho;Chun, Young-Soo;Kim, Jin-Soo;Lee, Do-Bum;Kim, Ook-Jong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • From the development of residential flat plate system, continuously bended shear reinforcements were applied in the joint performance test. The testing parameters are shear reinforcement types, which are no reinforcement, studrail reinforcement, and rebar type reinforcement. To verify the lateral resisting capacity, cyclic load is applied in the constant vertical load condition. From the test results, the resisting capacity of developed shear reinforcement system has a good performance behavior in the story drift ratio.

  • PDF

The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern (착지 높이와 지면 형태가 하지 관절에 미치는 영향)

  • Kim, Eun-Kyong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Validation of sequence test method of Pb-free solder joint for automotive electronics (자동차 전장품용 무연솔더 접합부의 시리즈 시험 유효성)

  • Kim, A Young;Oh, Chul Min;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.25-31
    • /
    • 2015
  • Due to environmental regulations (RoHS, WEEE and ELV) of the European Union, electronics and automotive electronics have to eliminate toxic substance from electronic devices and system. Specifically, reliability issue of lead-free solder joint have an increasing demand for the car electronics caused by ELV banning. The authors prepared engine control unit and cabin electronics soldered with Sn-3.0Ag-0.5Cu (SAC305). To compare with the degradation characteristics of solder joint strength, thermal cycling test (TC), power-thermal cycling test (PTC) and series tests were conducted. Series tests were conducted for TC and PTC combined stress test using the same sample in sequence and continuously. TC test was performed at $-40{\sim}125^{\circ}C$ and soak time 10 min for 1000 cycles. PTC test was applied by pulse power and full function conditions during 100 cycles. Combined stress test was tested in accordance with automotive company standard. Solder joint degradation was observed by optical microscopy and environment scanning electron microscopy (ESEM). In addition, to compare with deterioration of bond strength of quad flat package (QFP) and chip components, we have measured lead pull and shear strength. Based on the series test results, consequently, we have validated of series test method for lifetime and reliability of Pb-free solder joint in automotive electronics.

THE EFFECTS OF INCISON OF RETRODISCAL TISSUE AND OCCLUSAL REDUCTION ON TEMPOROMANDIBULAR JOINT OF RABBIT (가토에서 관절원판 후조직 절단 및 교합고경 감소가 악관절에 미치는 영향)

  • Lee, Byeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.645-660
    • /
    • 1993
  • In this study, effects of incision of retrodiscal tissue and unilateral occlusal reduction on temporomandibular joint of rabbit were investigated. Twenty-seven adult New Zealand White Rabbits, weighing over 3.5kg, were utilized in this study. Temporomandibular joint surgery was performed in left temporomandibular joint of 24 rabbits to displace disc anteriorly through incising the retrodiscal tissue 1-2mm posterior to the disc. They were divided into two groups : twelve were left untreated after surgery, occlusal reduction was performed on left posterior teeth every 2 weeks in the other twelve rabbits, The remaining three served as the control group. The sample were sacrificed by 8, 12, and 16 weeks after surgery. Histologic examinations were performed after sacrificing them. The results were as follows : 1. Histologic findings which were manifested by flat articular fossa, broad articular surface, generalized recession of articular cartilage and sclerosis of subchondral bone were observed. These findings were similar to internal derangement. 2. In the rabbits untreated after surgery, thin cartilagenous layer and necrotic tissue were observed in 8 weeks group, calcifying cartilagenous layer was observed in 12 weeks group, and cartilagenous layer on anterior portion was observed in 16 weeks group. So, it showed gradual healing pattern into the normal tissue except displaced disc. 3. Occlusal trauma after surgery resulted in generalized recession of upper and lower articular surface. Necrosis and vertical split on condylar process of mandible were observed in 8 weeks group. Osteoclasts, exposure of subchondral bone due to erosion on upper and lower articular surface, and degenerative changes on retrodiscal tissue were observed in 16 weeks group. So, it showed continuous prowess pattern of osteoarthrosis.

  • PDF