• Title/Summary/Keyword: flash translation layer

Search Result 91, Processing Time 0.025 seconds

Analysis and Improvement of the DPW-LRU Cache Replacement Algorithm for Flash Translation Layer (플래시 변환 계층을 위한 DPW-LRU 캐시 교체 알고리즘 분석 및 개선)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.289-297
    • /
    • 2020
  • Although flash disks are being used widely instead of hard disks, it is difficult to optimize for effective utilization of flash disks because overwrite in place is impossible and the power consumption and time required for read, write, and erase operations are all different. One of these optimization issues is a cache management strategy to minimize write operations. The cache operates at two levels: an operating system equipped with flash disks and a translation layer within the flash disk. Most studies deal with the operating system-level cache strategy. In this study, we implement and analyse the DPW-LRU algorithm which is one of the recently proposed operating system cache replacement algorithms to apply to FTL, and grope with some improvements. As a result of the experiment, the DPW-LRU algorithm maintained superiority even in the FTL environment, and showed better performance with a slight improvement.

A Cross Layer Optimization Technique for Improving Performance of MLC NAND Flash-Based Storages (MLC 낸드 플래시 기반 저장장치의 쓰기 성능 개선을 위한 계층 교차적 최적화 기법)

  • Park, Jisung;Lee, Sungjin;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1130-1137
    • /
    • 2017
  • The multi-leveling technique that stores multiple bits in a single memory cell has significantly improved the density of NAND flash memory along with shrinking processes. However, because of the side effects of the multi-leveling technique, the average write performance of MLC NAND flash memory is degraded more than twice that of SLC NAND flash memory. In this paper, we introduce existing cross-layer optimization techniques proposed to improve the performance of MLC NAND flash-based storages, and propose a new integration technique that overcomes the limitations of existing techniques by exploiting their complementarity. By fully exploiting the performance asymmetry in MLC NAND flash devices at the flash translation layer, the proposed technique can handle many write requests with the performance of SLC NAND flash devices, thus significantly improving the performance of NAND flash-based storages. Experimental results show that the proposed technique improves performance 39% on average over individual techniques.

Flash Translation Layer Using Adaptive N : N+K Mapping (적응적 N : N+K 매핑을 사용하는 플래시 변환 계층)

  • Ki Tak Kim;Dongkun Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.828-831
    • /
    • 2008
  • 플래시 메모리(Flash Memory) 기술이 빠르게 발전하면서, 플래시 메모리 기반의 저장 장치가 개인용 컴퓨터나 엔터프라이즈 서버 시스템과 같은 시스템에 2차적인 저장 장치로써 사용가능해지고 있다. FTL(Flash Translation Layer)의 기본적인 기능은 플래시 메모리의 논리 주소를 물리 주소로 바꾸는 것임에도 불구하고, FTL의 효율적인 알고리즘은 성능과 수명에 상당한 효과를 가지고 있다. 이 논문에서는 MP3 플레이어와 디지털 카메라, SSDs(Solid-State Disk)와 같은 낸드 플래시 메모리(NAND Flash Memory) 기반의 어플리케이션을 위한 N : N+K 매핑을 사용하는 새로운 FTL 설계를 제안한다. 성능에 영향을 미치는 매개변수들을 분류하여, 다양한 워크로드 분석을 기반으로 FTL을 조사했다. 우리가 제안하는 FTL을 가지고, 낸드 플래시 어플리케이션 가동에 따라 어떤 매개변수가 최대 성능을 낼 수 있는지 알아낼 수 있고, 그 변수들을 유연하게 조정하여 성능을 더 향상시킬 수 있다.

FAST : A Log Buffer Scheme with Fully Associative Sector Translation for Efficient FTL in Flash Memory (FAST :플래시 메모리 FTL을 위한 완전연관섹터변환에 기반한 로그 버퍼 기법)

  • Park Dong-Joo;Choi Won-Kyung;Lee Sang-Won
    • The KIPS Transactions:PartA
    • /
    • v.12A no.3 s.93
    • /
    • pp.205-214
    • /
    • 2005
  • Flash memory is at high speed used as storage of personal information utilities, ubiquitous computing environments, mobile phones, electronic goods, etc. This is because flash memory has the characteristics of low electronic power, non-volatile storage, high performance, physical stability, portability, and so on. However, differently from hard disks, it has a weak point that overwrites on already written block of flash memory is impossible to be done. In order to make an overwrite possible, an erase operation on the written block should be performed before the overwrite, which lowers the performance of flash memory highly. In order to solve this problem the flash memory controller maintains a system software module called the flash translation layer(FTL). Of many proposed FTL schemes, the log block buffer scheme is best known so far. This scheme uses a small number of log blocks of flash memory as a write buffer, which reduces the number of erase operations by overwrites, leading to good performance. However, this scheme shows a weakness of low page usability of log blocks. In this paper, we propose an enhanced log block buffer scheme, FAST(Full Associative Sector Translation), which improves the page usability of each log block by fully associating sectors to be written by overwrites to the entire log blocks. We also show that our FAST scheme outperforms the log block buffer scheme.

Block Associativity Limit Scheme for Efficient Flash Translation Layer (효율적인 플래시 변환 계층을 위한 블록 연관성 제한 기법)

  • Ok, Dong-Seok;Lee, Tae-Hoon;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.673-677
    • /
    • 2010
  • Recently, NAND flash memory has been widely used in embedded systems, personal computers, and server systems because of its attractive features, such as non-volatility, fast access speed, shock resistance, and low power consumption. Due to its hardware characteristics, specifically its 'erase-before-write' feature, Flash Translation Layer is required for using flash memory like hard disk drive. Many FTL schemes have been proposed, but conventional FTL schemes have problems such as block thrashing and block associativity problem. The KAST scheme tried to solve these problems by limiting the number of associations between data block and log block to K. But it has also block thrashing problem in random access I/O pattern. In this paper, we proposed a new FTL scheme, UDA-LBAST. Like KAST, the proposed scheme also limits the log block association, but does not limit data block association. So we could minimize the cost of merge operations, and reduce merge costs by using a new block reclaim scheme, log block garbage collection.

AFTL: An Efficient Adaptive Flash Translation Layer using Hot Data Identifier for NAND Flash Memory (AFTL: Hot Data 검출기를 이용한 적응형 플래시 전환 계층)

  • Yun, Hyun-Sik;Joo, Young-Do;Lee, Dong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.18-29
    • /
    • 2008
  • NAND Flash memory has been growing popular storage device for the last years because of its low power consumption, fast access speed, shock resistance and light weight properties. However, it has the distinct characteristics such as erase-before-write architecture, asymmetric read/write/erase speed, and the limitation on the number of erasure per block. Due to these limitations, various Flash Translation Layers (FTLs) have been proposed to effectively use NAND flash memory. The systems that adopted the conventional FTL may result in severe performance degradation by the hot data which are frequently requested data for overwrite in the same logical address. In this paper, we propose a novel FTL algorithm called Adaptive Flash Translation Layer (AFTL) which uses sector mapping method for hot data and log-based block mapping method for cold data. Our system removes the redundant write operations and the erase operations by the separating hot data from cold data. Moreover, the read performance is enhanced according to sector translation that tends to use a few read operations. A series of experiments was organized to inspect the performance of the proposed method, and they show very impressive results.

EAST: An Efficient and Advanced Space-management Technique for Flash Memory using Reallocation Blocks (재할당 블록을 이용한 플래시 메모리를 위한 효율적인 공간 관리 기법)

  • Kwon, Se-Jin;Chung, Tae-Sun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.476-487
    • /
    • 2007
  • Flash memory offers attractive features, such as non-volatile, shock resistance, fast access, and low power consumption for data storage. However, it has one main drawback of requiring an erase before updating the contents. Furthermore, flash memory can only be erased limited number of times. To overcome limitations, flash memory needs a software layer called flash translation layer (FTL). The basic function of FTL is to translate the logical address from the file system like file allocation table (FAT) to the physical address in flash memory. In this paper, a new FTL algorithm called an efficient and advanced space-management technique (EAST) is proposed. EAST improves the performance by optimizing the number of log blocks, by applying the state transition, and by using reallocation blocks. The results of experiments show that EAST outperforms FAST, which is an enhanced log block scheme, particularly when the usage of flash memory is not full.

A Multi-Level Flash Translation Layer for Large Capacity Solid State Drives

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2021
  • The flash translation layer(FTL) of SSD maps the logical page number requested from the host to the actual recorded flash memory page number. It is very important to reduce the amount of RAM used to manage the mapping information. In the existing demand-based FTLs, two-level method is applied in which mapping information is also recorded in flash memory pages and only their addresses are managed as a table in RAM. As the capacities of SSDs are growing to tens of terabytes, the amount of RAM for mapping table becomes too large. In this paper, ML-FTL was proposed as a method of managing mapping information in three levels to reduce the amount of RAM required drastically. From an evaluation, the increase in overhead was minimal compared to the conventional two-level method by properly utilizing cache.

A File Recovery Technique for Digital Forensics on NAND Flash Memory (NAND 플래시 메모리에서 디지털 포렌식을 위한 파일 복구기법)

  • Shin, Myung-Sub;Park, Dong-Joo
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.292-299
    • /
    • 2010
  • Recently, as flash memory is used as digital storage devices, necessity for digital forensics is growing in a flash memory area for digital evidence analysis. For this purpose, it is important to recover crashed files stored on flash memory efficiently. However, it is inefficient to apply the hard disk based file recovery techniques to flash memory, since hard disk and flash memory have different characteristics, especially flash memory being unable to in-place update. In this paper, we propose a flash-aware file recovery technique for digital forensics. First, we propose an efficient search technique to find all crashed files. This uses meta-data maintained by FTL(Flash Translation Layer) which is responsible for write operation in flash memory. Second, we advise an efficient recovery technique to recover a crashed file which uses data location information of the mapping table in FTL. Through diverse experiments, we show that our file recovery technique outperforms the hard disk based technique.