• Title/Summary/Keyword: flash memory device

Search Result 163, Processing Time 0.022 seconds

Dependence of Electrons Loss Behavior on the Nitride Thickness and Temperature for Charge Trap Flash Memory Applications

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.245-248
    • /
    • 2014
  • $Pt/Al_2O_3/Si_3N_4/SiO_2/Si$ charge trap flash memory structures with various thicknesses of the $Si_3N_4$ charge trapping layer were fabricated. According to the calculated and measured results, we depicted electron loss in a schematic diagram that illustrates how the trap to band tunneling and thermal excitation affects electrons loss behavior with the change of $Si_3N_4$ thickness, temperature and trap energy levels. As a result, we deduce that $Si_3N_4$ thicknesses of more than 6 or less than 4.3 nm give no contribution to improving memory performance.

A Low Power Consumption Management Scheme Based on Touch & Play for Smart Memory Tags (스마트 메모리 태그를 위한 Touch & Play 기반 저전력 소모 관리 기법)

  • Yun, Young-Sun;Ha, Sunju;Son, Kyung A;Eun, Seongbae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • QR/NFC tags have been utilized in various fields like exhibition, museum, and so on, but they have a drawback that they are read-only fundamentally. We devise a novel device called a smart memory tag (below mem-tag) which is supplemented with the write function through combining a flash memory into a NFC tag. A mem-tag is composed of an NFC tag, an MCU, a flash memory, a bluetooth module, and a battery, and is inter-operating with smartphones via bluetooth communication. It can be used in a bulletin board to support writing replies and in a check-in service to verify the presence of the site. What matters is that users' inter-operations are borne to be asynchronous, which leads to the energy consumption to wait for users' actions. Sleep mechanisms and asynchronous MAC protocols used in ubiquotous sensor networks cannot avoid the consumption of battery. In this paper, we propose a touch and play scheme for minimizing the consumption of battery that the MCU wakes up and PLAY when a user TOUCH the mem-tag. We implemented the system to show that our scheme lets the mem-tag work 50 times longer than the sleep and wake-up scheme.

Analysis of SOHOS Flash Memory with 3-level Charge Pumping Method

  • Yang, Seung-Dong;Kim, Seong-Hyeon;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Jin-Seop;Ko, Young-Uk;An, Jin-Un;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • This paper discusses the 3-level charge pumping (CP) method in planar-type Silicon-Oxide-High-k-Oxide-Silicon (SOHOS) and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) devices to find out the reason of the degradation of data retention properties. In the CP technique, pulses are applied to the gate of the MOSFET which alternately fill the traps with electrons and holes, thereby causing a recombination current Icp to flow in the substrate. The 3-level charge pumping method may be used to determine not only interface trap densities but also capture cross sections as a function of trap energy. By applying this method, SOHOS device found to have a higher interface trap density than SONOS device. Therefore, degradation of data retention characteristics is attributed to the many interface trap sites.

Development Status and Prospect of New Memory Devices (신 메모리 소자의 개발 현황 및 전망)

  • Jeong, Hongsik
    • Vacuum Magazine
    • /
    • v.1 no.3
    • /
    • pp.4-8
    • /
    • 2014
  • Since the modern computer architecture was suggested by Von Neumann in 1945, computer has become inevitable for our life. This brilliant growth of computer has been led by device miniaturization trend, so called Moore's law. Especially, the explosive growth of memory devices such as DRAM and Flash have played key role in huge enlarging utilization of computer. However, abrupt increase of data used for many applications in big data era provoke the excessive energy consumption of data center which results from the inefficiency of conventional memory-storage hierarchy. As a solution, the application of new memory devices has been brought up for innovative memory-storage hierarchy. In this paper, the current development status and prospect of new memory devices will be discussed.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Study of Data Retention Characteristics with surrounding cell's state in a MLC NAND Flash Memory (멀티 레벨 낸드 플레쉬 메모리에서 주변 셀 상태에 따른 데이터 유지 특성에 대한 연구)

  • Choi, Deuk-Sung;Choi, Sung-Un;Park, Sung-Kye
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.239-245
    • /
    • 2013
  • The data retention characteristics depending on neighbor cell's threshold voltage (Vt) in a multilevel NAND flash memory is studied. It is found that a Vt shift (${\Delta}Vt$) of the noted cell during a thermal retention test is increased as the number of erase-state (lowest Vt state) cells surrounding the noted cell increases. It is because a charge loss from a floating gate is originated from not only intrinsic mechanism but also lateral electric field between the neighboring cells. From the electric field simulation, we can find that the electric field is increased and it results in the increased charge loss as the device is scaled down.

Effects of Composition on the Memory Characteristics of (HfO2)x(Al2O3)1-x Based Charge Trap Nonvolatile Memory

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Zhao, Dongqiu;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.241-244
    • /
    • 2014
  • Charge trap flash memory capacitors incorporating $(HfO_2)_x(Al_2O_3)_{1-x}$ film, as the charge trapping layer, were fabricated. The effects of the charge trapping layer composition on the memory characteristics were investigated. It is found that the memory window and charge retention performance can be improved by adding Al atoms into pure $HfO_2$; further, the memory capacitor with a $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer exhibits optimized memory characteristics even at high temperatures. The results should be attributed to the large band offsets and minimum trap energy levels. Therefore, the $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer may be useful in future nonvolatile flash memory device application.

Implementation of Light Weight Linux O.S on the Flash Memory (플래쉬 메모리 내에 상주 가능한 경량 리눅스 운영체제 구현)

  • Jang, Seung-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2298-2305
    • /
    • 2007
  • Many people is studying the embedded system. The embedded system becomes a small size device. The DOM memory is using in the mobile device and small site devices. This paper proposes light-weighted Linux O.S that is running onto the DOM memory. The embedded system with the DOM must have a light-weigthed O.S due to the memory space restriction. This paper designs light-weigthed Linux O.S for the DOM memory. The new designed LILO boot loader boots the new designed light-weigthed Linux O.S as a normal Linux O.S. This paper experiments comparing the designed new light-weigthed Linux O.S with a Linux PC.

WWCLOCK: Page Replacement Algorithm Considering Asymmetric I/O Cost of Flash Memory (WWCLOCK: 플래시 메모리의 비대칭적 입출력 비용을 고려한 페이지 교체 알고리즘)

  • Park, Jun-Seok;Lee, Eun-Ji;Seo, Hyun-Min;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.913-917
    • /
    • 2009
  • Flash memories have asymmetric I/O costs for read and write in terms of latency and energy consumption. However, the ratio of these costs is dependent on the type of storage. Moreover, it is becoming more common to use two flash memories on a system as an internal memory and an external memory card. For this reason, buffer cache replacement algorithms should consider I/O costs of device as well as possibility of reference. This paper presents WWCLOCK(Write-Weighted CLOCK) algorithm which directly uses I/O costs of devices along with recency and frequency of cache blocks to selecting a victim to evict from the buffer cache. WWCLOCK can be used for wide range of storage devices with different I/O cost and for systems that are using two or more memory devices at the same time. In addition to this, it has low time and space complexity comparable to CLOCK algorithm. Trace-driven simulations show that the proposed algorithm reduces the total I/O time compared with LRU by 36.2% on average.

Design and Implementation of Hybrid Hard Disk I/O System based on n-Block Prefetching for Low Power Consumption and High I/O Performance (저전력과 입출력 성능이 향상된 n-블록 선반입 기반의 하이브리드 하드디스크 입출력 시스템 설계 및 구현)

  • Yang, Jun-Sik;Go, Young-Wook;Lee, Chan-Gun;Kim, Deok-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.451-462
    • /
    • 2009
  • Recently, there are many active studies to enhance low I/O performance of hard disk device. The studies on the hardware make good progress whereas those of the system software to enhance I/O performance may not support the hardware performance due to its poor progress. In this paper, we propose a new method of prefetching n-blocks into the flash memory. The proposed method consists of three steps: (1)analyzing the pattern of read requests in block units; (2)determining the number of blocks prefetched to flash memory; (3)replacing blocks according to block replacement policy. The proposed method can reduce the latency time of hard disk and optimize the power consumption of the computer system. Experimental results show that the proposed dynamic n-block method provides better average response time than that of the existing AMP(Adaptive multi stream prefetching) method by 9.05% and reduces the average power consumption than that of the existing AMP method by 11.11%.