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Abstract—This paper discusses the 3-level charge 

pumping (CP) method in planar-type Silicon-Oxide-

High-k-Oxide-Silicon (SOHOS) and Silicon-Oxide-

Nitride-Oxide-Silicon (SONOS) devices to find out the 

reason of the degradation of data retention properties. 

In the CP technique, pulses are applied to the gate of 

the MOSFET which alternately fill the traps with 

electrons and holes, thereby causing a recombination 

current Icp to flow in the substrate. The 3-level charge 

pumping method may be used to determine not only 

interface trap densities but also capture cross sections 

as a function of trap energy. By applying this method, 

SOHOS device found to have a higher interface trap 

density than SONOS device. Therefore, degradation 

of data retention characteristics is attributed to the 

many interface trap sites.   

 

Index Terms—3-level charge pumping, SOHOS flash 

memory, interface trap, retention   

I. INTRODUCTION 

The silicon–oxide–nitride–oxide–silicon (SONOS) 

flash memory has recently drawn attention for 

applications in electrically erasable and programmable 

read-only memories due to the advantages of lower 

programming voltage, smaller cell size, and better 

endurance characteristics for memory operation. In 

addition, the SONOS device is also one of the most 

promising candidates to realize the continuous vertical 

scaling on Flash memory through the mechanism of 

charge trapping in its structure [1, 2]. Since the SONOS 

device stores charge in the spatially isolated deep-level 

traps, a single defect in the tunnel oxide will not cause 

the discharge of the memory cell [3, 4]. For lower 

voltage operation and further scaling down of memory 

devices in SONOS structures, decreasing of oxide-

nitride-oxide thickness is inevitable. But, the thinning of 

the oxides and the silicon nitride brings about the charge 

leakage and decrease of maximum threshold voltage 

shifts. It has been reported that the linear relationship of 

the maximum threshold voltage shifts exhibits due to the 

constants of trapped-electron densities at the top and 

bottom interface [5]. Recently, SONOS structures with 

high-k trapping layers being capable of the scaling down 

were proposed to reduce the operation voltage of 

program/erase and to maintain the better data retention 

properties [6]. But, SOHOS devices have the poorer data 

retention capability than SONOS devices. The optimal 

compositions in the HfO2 charge trapping layer and the 

relevant physical mechanisms still remain unclear and 

thus are worth further exploring [7]. That is, to find out 

the reason of degradation of data retention characteristics 

in SOHOS device, we carried out 3-level charge 

pumping method analysis which is a powerful tool to get 

the exact interface trap density. 

II. EXPERIMENTAL 

The fabrication details are shown in Fig. 1(a). P-type 
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(100) bulk substrates are used as starting materials for a 

triple dielectric stack structure. The tunneling oxide of 5-

nm is thermally grown, and the HfO2 of 3.5-nm is 

deposited by an atomic layer deposition (ALD) using 

tetrakis (ethylmethylamino)hafnium (TEMAHf) precursor 

and ozone at 350°C, the control oxide of 6-nm is 

deposited by low-pressure chemical vapor deposition 

(LPCVD), and post deposition anneal (PDA) is 

performed at 900°C, 10sec. The gate length is 0.5µm. 

Then, n-doped source and drain junctions are formed, 

followed by transistor source/drain annealing at 1000°C 

in nitrogen ambient for 10sec, and the conventional back-

end of line process such as drain contact and signal metal 

line are progressed. Fig. 1(b) shows the transmission 

electron microscopy (TEM) images of the cross section 

of the fabricated devices and a good interface layer 

between SiO2 and HfO2. The major electrical 

characteristics including 3-level charge pumping method 

of the devices were measured using a semiconductor 

parameter analyzer (HP4156C), pulse generator 

(Agilent81104A). 

III. RESULTS AND DISCUSSIONS 

Fig. 2 shows the representative transfer characteristics 

of fabricated SONOS and SOHOS devices with structure 

of planar-type flash memory. The constant current 

method is used for threshold voltage (VTH) extraction, 

where VTH is defined as the bias of gate voltage that 

forces drain current to (W/L) × 100nA at VD = 0.05V. 

Expect that HfO2 device has lower VTH due to smaller 

equivalent oxide thickness (EOT), both devices have 

similar electrical performance. 

The device with HfO2 trapping layer is expected to 

show better data retention characteristics than that with 

Si3N4 trapping layer, because HfO2 material has larger 

conduction band offset than Si3N4 material. However, 

threshold voltage (VTH) of SOHOS device decreased 

about 23 percent as shown in Fig. 3. 

SIMS analysis was further performed in order to verify 

the chemical composition of the stack. HfO2 diffusion 

into SiO2 takes place. It has been reported that the HfO2 

interface has a high interface trap density [8]. HfO2 

diffused into SiO2/Si interface leads to an important 

source defects in the gate oxide stack. 

 

Afterwards, we carried out 3-level charge pumping 

analysis to find out the definite reason for degradation of 

retention properties in SOHOS device. Fig. 5(a) shows 

bias levels above inversion voltage (VINV) and below 

PDA 900 ℃, 10 sec
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Fig. 1. (a) Process flow, (b) Cross-sectional TEM images of 

flash memory structure. 

 

 

 

Fig. 2. VGS-IDS characteristic of planar type flash memory 

device. 
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Fig. 3. Date Retention characteristic of planar type flash 

memory device. 
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accumulation voltage (VACC) are used as in standard 

charge pumping [9]. Using 3-level CP, the 2nd pulse 

duration (te) and 2
nd pulse voltage (Ve) of the 3-level are 

varied to determine trap parameters. And Fig. 5(b) shows 

SOHOS device has much higher charge pumping current 

than SONOS device. It is shown that strong electron 

trapping is observed with SOHOS device. 

The test devices are MOS capacitors with 100-µm gate 

length, 100-µm width. The 3-level pulse used here is 

identical to that of Tseung but with both Ve variable. The 

pulse is applied to the gate and Icp is measured at the 

substrate [9]. A 100-Hz pulse with 20-ns rise and fall 

times was used to explore a wide range of trap time 

constants. Experimental Icp data obtained as a function of 

te for different values of Ve are shown in Fig. 5(a). At 

small te, Icp decrease approximately as ln (te). This 

behavior is expected since [9, 10] 
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where, k is Boltzman's constant and T is the absolute 

temperature. If is independent of Et, this reduces to Eq. 

(2). 
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As discussed above, when te is long, the traps above 

the Fermi level determined by Ve emit their electrons. 

Therefore, the traps reach equilibrium, and Icp saturates at 

long times, as observed in Fig. 6. This clean saturation 

characteristic indicates that the trap levels are associated 

with a single emission time and thus each is 

characterized by a single value of Dit which may then be 

determined using Tseung's method [10] from the 

variation of saturated Icp with Ve.  

The distributions of interface trap density Dit (Et) 

extracted from 3-level CP measurements are shown in 
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Fig. 4. SIMS depth profile of Hafnium diffusion into the tunnel 

oxide. 

 

 

Fig. 5. (a) The three-level CP pulse, (b) Charge pumping 

current of SONOS and SOHOS device. 
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Fig. 6. Icp as a function of te for electron emission, with pulse 

bias Ve as a parameter. 
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Fig. 7. In both devices, Dit (Et) are smallest in the middle 

of the gap and increases near the band edges. However, it 

is noticeable that SOHOS devices have higher interface 

trap density than SONOS device, with less asymmetric 

energy profile throughout the Si band gap. 

The time constant for electron capture is given by 
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where Vth is the electron thermal velocity, ni is the 

intrinsic carrier density, and σe is the capture cross 

section. For a 100 kHz symmetrical square gate pulse, we 

have τ = 10us and the capture cross section is extracted 

to be 2.43 x 10-16 for SOHOS with Vth = 1 x 107 cm/s and 

ni = 1 x 1014 cm-3. 

V. CONCLUSIONS 

This paper discusses the reason of poor reliability in 

planar-type SOHOS devices compared with SONOS 

devices. We have studied the interface trap density of 

planar-type SOHOS devices and its energy profile 

through 3-level charge pumping method. SOHOS 

devices have a higher interface trap density than SONOS 

devices. Therefore, the degradation of data retention 

characteristics is attributed to many interface trap sites. 
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