• Title/Summary/Keyword: flash flame

Search Result 36, Processing Time 0.022 seconds

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

Measurement and Prediction of Combustion Characteristics of DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate) for Secondary Battery Solutions (2차전지 용액인 DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate)계의 연소특성치 측정 및 예측)

  • Y. S. Jang;Y. R. Jang;J. J. Choi;D. J. Jeon;Y. G. Kim;D. M. Ha
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.8-14
    • /
    • 2023
  • Lithium ions can induce the thermal runaway phenomenon and lead to reignition due to electrical, mechanical, and environmental factors such as high temperature, smoke generation, explosions, or flames, which is extremely likely to create safety concerns. Therefore, one of the ways to improve the flame retardancy of the electrolyte is to use a flame-retardant additive. Comparing the associated characteristic value of existing substances with the required experimental value, it was found that these values were either considerably different or were not documented. It is vital to know a substance's combustion characteristic values, flash point, explosion limit, and autoignition temperature (AIT) as well as its combustion characteristics before using it. In this research, the flash point and AIT of materials were measured by mixing a highly volatile and flammable substance, diethyl carbonate (DEC), with flame-retardant dimethyl methylphosphonate (DMMP). The flash point of DEC, which is a pure substance, was 29℃, and that for DMMP was 65℃. Further, the lower explosion limit calculated using the measured flash point of DEC was 1.79 Vol.%, while that for DMMP was 0.79 Vol.%. The AIT was 410℃ and 390℃ for DEC and DMMP, respectively. In particular, since the AIT of DMMP has not been discussed in any previous study, it is necessary to ensure safety through experimental values. In this study, the experimental and regression analysis revealed that the average absolute deviation (ADD) for the flash point of the DEC+DMMP DEC+DMMP system is 0.58 sec and that the flash point tends to increase according to changes in the composition employed. It also revealed that the AAD for the AIT of the mixture was 3.17 sec and that the AIT tended to decrease and then increase based on changes in the composition.

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

Measurement of Fire Point and Flash Point for Alcohols Using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 알콜류의 인화점 및 연소점 측정)

  • Ha Dong-Myeong;Lee Sung-Jin;Song Young-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.69-73
    • /
    • 2004
  • The flash point is one of the most important combustible properties used to determine the potential for the fire and explosion hazards of industrial material and the fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash point and fire point were measured to present raw data of the flammable risk assessment for alcohols, using Tag open-cup apparatus(ASTM D 1310-86). The measured values were compared with the calculated values based on 0.78 times stoichiometric concentration. The values calculated by the proposed equations were in good agreement with the measured values.

A Study on the Perception of Fire Risk and Flash Flame Concerning the Firefighter (화재진압대원의 화재현장 위험도 및 돌발화염 인식 조사에 관한 연구)

  • Choi, Jae-hyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.529-536
    • /
    • 2017
  • In this study, the perceptions were surveyed fire risk and flash flames concerning the firefighters. The results were statistically evaluated according to age, experience and rank. More than 70% of the respondents answered that there is a possibility of unexpected flame exposure in the field of fire, but there was no recognition difference according to age, experience and rank. However, if there is an emergency situation in the field of fire, the survey on the ability to cope with crises showed that there is a difference in perception depending on the age, career, and rank of respondents. From these results, it is expected that strengthening simulation training of unexpected situation will be more urgently required in the future, and measures should be taken to minimize human accidents through improvement of standard operation procedures or supplement of fire suppression education according to unexpected situation.

A Study on the Fire Hazard of Transportation Oil (수송기관용 오일의 화재위험성에 관한 연구)

  • Park, Young Ju;Hwang, Me Jung;Lee, Hae Pyeong;Lee, Seung Chul;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.114-120
    • /
    • 2014
  • The purpose of this study is to conduct the study of the combustion and thermal characteristics through transportation oil for the analysis of fire hazard. Transportation oil breaks down into fuels such as diesel for civilian demands, gasoline, DF1(diesel for military), high sulfur diesel(for marine), kerosene and JP1(for aviation), and lubricants like brake fluid, power steering oil, engine oil, and automatic and manual transmission oil. The experiments of flash point, ignition point, flame duration time, heat release rate were carried out using TAG closed cup flash point tester(AFP761), Cleveland open cup auto flash point analyzer(AFP762), KRS-RG-9000 and Dual cone calorimeter. As a result, the fuel's ignition points were lower than lubricants, especially that of gasoline was not conducted as it has below zero one. Gasoline has the highest ignition point of about $600^{\circ}C$, while the other fuels showed $400{\sim}465^{\circ}C$. For flame duration time, lubricants had over 300 seconds, but fuels had less than 300 seconds except high sulfur diesel(350 seconds). Total heat release rate ranged $287{\sim}462kW/m^2$ for lubricants and gasoline showed the highest total heat release rate, $652kW/m^2$.

Comparison of Combustion Characteristics With and Without Water Tube Simulating Heat Exchanger in Two Sections Porous Media Burner (2단 다공성 매체버너에서 열교환기를 모사한 수관 유무에 따른 연소 특성 비교)

  • Lee, Hui-Do;Kim, Jae-Hyeon;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.24-34
    • /
    • 2019
  • In this study, the experimental studies were conducted to analyzing characteristics of combustion and flame stabilizing according to with and without water tube in boiler. The burner has consisted of SiC foam where has the location of submerged flame between a ceramic board acting as flash-back arrestor. Porous burner is also insulated to minimize heat loss in the radial direction. In the condition of fixed equivalence ratio, the flame mode was divided into three stability zones by the flow rate. The main factor for blow-off and flash-back depends on mixture flow rate. Consequently, the case of burner with water-tube has higher NOx emissions than without case. This result explains that the presence of water-tube makes the heat loss resistant to ambient temperature with increasing of NOx. This tendency was proved by predicting the relationship between O2 emission and NO production rate, and by analysing temperature profiles.

Flame Stabilization Mechanism of a Micro Cyclone Combustor (마이크로 사이클론 연소기의 화염 안정화 기구)

  • Oh, Chang-Bo;Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;Hwang, Cheol-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.139-144
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a component of mobile power generator (MPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately to prevent a flash-back. The flame shape stabilized inside the micro cyclone combustor was visualized experimentally and the flow field and the combustion characteristics of the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the overall flow and flame features of the combustor. The flame stabilization mechanism could be well understood using the velocity distribution inside the combustor. For only non-reacting case, it was found that a weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. It was also found that small regions that have a negative axial velocity exist near the fuel injection ports for both of non-reacting and reacting case. It was identify that a flame front was stabilized at the negative axial velocity regions near the fuel injection ports.

  • PDF

A Study on Fire Prevention Requirements and Tests for Small Aircraft (소형항공기의 화재방지 요건 및 시험에 관한 연구)

  • Yoo, Seung-Woo;Jin, Young-Kwon
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • The goal of fire prevention research is to eliminate fires as a cause of fatal accidents and there are two main areas of research. One is to prevent flame propagation during in-flight and it addresses fire hazards. The other is to minimize the possibility of flame penetration or fuselage burn-through and it aims toward post-crash survival include crash protection, emergency evacuation and post-evacuation survival. Civil aviation authorities world-wide are trying to identify threats and measure performance for fire prevention. The results of research are standardized and given as general directions of test methods. This paper has prepared to study and present the means of compliance to the fire prevention requirements and applicable test methods.

Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride (폴리우레탄과 개질된 질화붕소로 이루어진 난연성 방열 복합체)

  • Kim, Min-gyu;Lee, Chang-rock;Jo, Nam-Ju
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.487-494
    • /
    • 2020
  • Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4'-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m·K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.