DOI QR코드

DOI QR Code

Comparison of Combustion Characteristics With and Without Water Tube Simulating Heat Exchanger in Two Sections Porous Media Burner

2단 다공성 매체버너에서 열교환기를 모사한 수관 유무에 따른 연소 특성 비교

  • Lee, Hui-Do (Department of Aerospace Engineering, Sunchon National University) ;
  • Kim, Jae-Hyeon (Department of Aerospace Engineering, Sunchon National University) ;
  • Lee, Kee-Man (School of Mechanical and Aerospace Engineering, Sunchon National University)
  • 이희도 (순천대학교 우주항공공학과) ;
  • 김재현 (순천대학교 우주항공공학과) ;
  • 이기만 (순천대학교 기계우주항공공학부)
  • Received : 2019.09.09
  • Accepted : 2019.10.24
  • Published : 2019.10.31

Abstract

In this study, the experimental studies were conducted to analyzing characteristics of combustion and flame stabilizing according to with and without water tube in boiler. The burner has consisted of SiC foam where has the location of submerged flame between a ceramic board acting as flash-back arrestor. Porous burner is also insulated to minimize heat loss in the radial direction. In the condition of fixed equivalence ratio, the flame mode was divided into three stability zones by the flow rate. The main factor for blow-off and flash-back depends on mixture flow rate. Consequently, the case of burner with water-tube has higher NOx emissions than without case. This result explains that the presence of water-tube makes the heat loss resistant to ambient temperature with increasing of NOx. This tendency was proved by predicting the relationship between O2 emission and NO production rate, and by analysing temperature profiles.

본 연구에서는 수관식 보일러의 열교환기를 모사하기 위하여 수관의 존재 유무에 따른 화염의 안정화와 연소 특성을 당량비와 유속에 따라 비교하였다. 버너는 화염이 존재하는 SiC foam과 역화 방지를 위한 세라믹 보드, 균일한 유동장을 형성하는 알루미나 볼로 구성되며, 반경 반향의 열 손실을 최소화하기 위하여 단열재로 밀폐되어 있다. 결과적으로 수관이 존재하는 경우 낮은 당량비 구간에서 역화 및 날림 현상의 경계가 넓어지는 것을 안정화 영역에서 확인할 수 있었다. 또한, 수관이 존재하는 경우 NOx 배출량이 수관이 없는 경우보다 증가하는 것을 확인하였다. 이는 수관이 존재함으로써 열 손실을 억제하여 화염의 온도가 증가하는 것으로 판단하였으며, O2 배출량과 화염의 온도를 예측하여 입증하였다.

Keywords

References

  1. Y. Kotani, T. Takeno, "An experimental study on stability and combustion characteristics of an excess enthalpy flame", Symposium (International) on Combustion, 19, 1503-1509, (1982)
  2. M. Abdul. Mujeebu, M.Z. Abdullah, M.Z Abu Bakar, A.A Mohamad, R.M.N. Muhad, M.K. Abdullah, "Combustion in porous media and its applications-A comprehensive survey", Symposium (International) on Combustion, 90, 2287-2312, (2008)
  3. A.A. Mohamad, "Combustion in Porous Media: Fundamentals and Applications", Transport Phenomena in Porous Media III, (2005)
  4. S.B. Sathe, R.E. Peck, T.W. Tong, "Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: a Numerical Study", Combustion Science and technology, 70, 93-109, (1990) https://doi.org/10.1080/00102209008951615
  5. D. K. Min, H. D. Shin, "Laminar premixed flame stabilized inside a honeycomb ceramic", International Journal of Heat and Mass Transfer, 34, 341-356, (1991) https://doi.org/10.1016/0017-9310(91)90255-D
  6. J.R. Howell, M.J. Hall and J.L. Ellzey, " Combustion of hydrocarbon fuels within porous inert media", Progress in Energy and Combustion Science, 22, 121-145, (1996) https://doi.org/10.1016/0360-1285(96)00001-9
  7. M. Abdul Mejeebu, M.Z. Abdullah, A.A. Mohamad, "Development of energy efficient porous medium burners on surface and submerged combustion modes", Energy, 36, 5132-5139, (2011) https://doi.org/10.1016/j.energy.2011.06.014
  8. K.A. Al-attab, John Chung Ho, Z.A. Zainal, "Experimental investigation of submerged flame in packed bed porous media burner fueled by low heating valus producer gas", Experimental Thermal and Fiuid Science, 62, 1-8, (2015) https://doi.org/10.1016/j.expthermflusci.2014.11.007
  9. Mujeebu MA, Abdullah MZ, Abu Bakar MZ, Mohamad AA, Abdullah MK, "Applications of porous media combustion technology - A review", Appl Energy, 86, 1365-1375, (2009) https://doi.org/10.1016/j.apenergy.2009.01.017
  10. M. Abdul Mujeebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, "A review of investigations on liquid fuel combustion in porous inert media", Progress in Energy and Combustion Science, 35, 216-230, (2009) https://doi.org/10.1016/j.pecs.2008.11.001
  11. Y.C. Park, J. Kim, "Submerged combustion vaporizer optimization using Entropy Minimization Method", Applied Thermal Engineering, 103, 1071-1076, (2016) https://doi.org/10.1016/j.applthermaleng.2016.04.133
  12. Y. Wang, H. Zeng, Y. Shi, T. Cao, N. Cai, X. Ye, et al, "Power and heat cogeneration by micro-tubular flame fuel cell on a porous media burner", Energy, 109, 117-123, (2016) https://doi.org/10.1016/j.energy.2016.04.095
  13. K.B. Sutar, Rivi. M.R, S. Kohli, "Design of a partially aerated naturally aspirated burner for producer gas", Energy, 116, 773-785, (2016) https://doi.org/10.1016/j.energy.2016.10.019
  14. Huaming Dai, Baiquan Lin, Cheng Zhai, Yidu Hong, Qingzhao Li, "Subadiabtic combustion of premixed gas in ceramic foam burner", Int. Journal of Heat ad mass transfer, 91, 318-329, (2015) https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.122
  15. F. J. Weinberg, "Combustion temperature : The future?", Nature, (1971)
  16. T. Takeno, K. Sato, "An Excess Enthalpy Flame Theory", Combustion Science and Technology, 20, 73-84, (1979) https://doi.org/10.1080/00102207908946898
  17. C. Zheng, L. Cheng. A. Saveliev, Z. Luo, K. Cen, "Gas and solid phase temperature measurements of porous media combustion", Proceedings of the Combustion Institute, 33, 3301-3308, (2011) https://doi.org/10.1016/j.proci.2010.05.037
  18. S. Wood, A. T. Harris, "Porous burners for lean-burn applications", Progress in Energy and Combustion Science, 34, 667-684, (2008) https://doi.org/10.1016/j.pecs.2008.04.003
  19. Jia F, Liu, Wen H. Hsieh, "Experimental investigation of combustion in porous heating burners", Combustion and Flame, 138, 295-203, (2004) https://doi.org/10.1016/j.combustflame.2004.06.003
  20. William M. Barcellos, Luis Carlos E. Q. Souza, Alexei V. Saveliev, Lawrence A. Kennedy, "Ultra-low emission steam boiler constituted of reciprocal flow porous burner", Experimental Thermal and Fluid Science, 35, 570-580, (2011) https://doi.org/10.1016/j.expthermflusci.2010.11.005
  21. M.T. Smucker, J. L .Ellzey, "Computational and experimental study of a twosection porous burner", Combustion Science and Technology, 176, 1171-1189, (2004) https://doi.org/10.1080/00102200490457385
  22. B. J. Vogel, J. L. Ellze, "Subadiabatic and superadiabatic performance of a two-section porous burner", Combustion Science and Technology, 177, 1323-1338, (2005) https://doi.org/10.1080/00102200590950494
  23. H. B. Gao, Z. G. Qu, X. B. Feng, W. Q. Tao, "Methane/air premixed combustion in a two-layer porous burner with different foam materials", Fuel, 115, 154-161, (2014) https://doi.org/10.1016/j.fuel.2013.06.023
  24. Huaibin Gao, Zhiguo Qu, Xiangbo Feng, Wenquan Tao, "Combustion of methane/air mixtures in a two-layer porous burner: A comparison of alumina foams, beads, and honeycombs", Experimental Thermal and Fluid Science, 52, 215-220, (2014) https://doi.org/10.1016/j.expthermflusci.2013.09.013
  25. S. G. Kim, D. K. Lee, "An experimental study of $N_2$ dilution effects on $CH_4-O_2$ flame stabilization characteristics in a twosection porous medium", Applied Thermal Engineering, (2016)
  26. R.K. Hanson, S. Salimian, Survey of rate constants in the N/H/O system, Combustion Chemistry, New York, (2018)