Journal of Advanced Marine Engineering and Technology
/
제28권1호
/
pp.83-89
/
2004
Flare nut is an important Part that used to joint a brake tube-end in automobiles. It was made of SWCH 10A by machining. But we studied to make it by metal forming. The main focus of this paper is to investigate an optimal forging processes for flare nut using the DEFORM$^{TM}$-3D. commercially available finite element code and tests. Actually an explicit finite element analysis of the flare nut forging processes has been carried out to predict an optimal shape of the flare nut and its results were reflected in the tests of the forging processes design for flare nut. The simulation results which had obtained from finite element analysis were contributed to the forging processes design for flare nut. An optimal shape of nave nut showed agreements with test results. Furthermore. this paper should contribute to a development of the forging process for a variety of parts.s.
Field Line of sight Automated Radiance Exposure (FLARE) 시스템을 이용하여 다목적위성3호/3A호의 절대복사 검보정 연구를 수행하였다. FLARE는 미국의 Labshphere사에 의해 개발된 시스템으로 SPecular Array Radiometric Calibration (SPARC) 개념을 적용한 것이다. FLARE는 거울처럼 반사하는 거울 타겟을 사용하여 산란되는 복사에너지의 원인 요소들을 최소화시킨 단순한 복사보정 방법을 제공한다. FLARE 시스템이 장착된 사이트를 통과하는 다목적위성3호/3A호를 이용한 영상자료 획득을 위해 2021년 7월 5일부터 7월 15일 사이에 필드캠페인을 진행하였다. 기상 상황 때문에 여러 번의 관측 자료 가운데 2개의 다목적위성3호 관측자료만이 유효한 샘플 영상으로 확인되었다. FLARE 시스템과 다목적위성3호 관측 자료를 바탕으로 절대복사 검보정 계수를 산출하였다. 7월 7일과 7월 13일 획득된 2개의 FLARE 관측 자료를 통해 계산된 결과는 근적외 채널을 제외하고 1% 이내의 매우 유사한 결과를 보여 주었다. 2021년 8월 획득된 다목적위성3호/3A호 자료를 추가하여 분석한 결과, 현재의 메타 데이터에 할당된 위성들의 이득값들과는 상당한 차이를 보였다. 제한된 획득자료로 인해 FLARE 시스템을 실제 운영 중인 다목적위성3호/3A호에 대한 절대복사 검보정 계수 산출 용도로 사용하기 위해서는 추가적인 연구가 필요할 것으로 판단된다.
We introduce the two-dimensional spectral observations of solar flares using the Solar Tower Tele-scope of Nanjing University, China. In particular, we introduce three typical events and the methods used to analyze the data. (1) The flare of November 11, 1998, which is a limb flare. We derive the temperature and density within the flaring loop using non-LTE calculations. The results show that the loop top may be hotter and denser than other parts of the loop, which may be a result of magnetic reconnect ion above the loop. (2) The flare of March 10, 2001, which is a white-light flare that shows an emission enhancement at the near infrared continuum. We propose a model of non-thermal electron beam heating plus backwarming to interpret the observations. (3) The flare of September 29, 2002, which shows unusual line asymmetries at one flare kernel. The line asymmetries are caused by an upward moving plasma that is accelerated and heated during the flare development.
In this study we apply Convolution Neural Network(CNN) to solar flare occurrence prediction with various parameter options using the 00:00 UT MDI images from 1996 to 2010 (total 4962 images). We assume that only X, M and C class flares correspond to "flare occurrence" and the others to "non-flare". We have attempted to look for the best options for the models with two CNN pre-trained models (AlexNet and GoogLeNet), by modifying training images and changing hyper parameters. Our major results from this study are as follows. First, the flare occurrence predictions are relatively good with about 80 % accuracies. Second, both flare prediction models based on AlexNet and GoogLeNet have similar results but AlexNet is faster than GoogLeNet. Third, modifying the training images to reduce the projection effect is not effective. Fourth, skill scores of our flare occurrence model are mostly better than those of the previous models.
In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.
One-dimensional hydrodynamic modeling of a protostellar flare loop is presented. The model consists of thermally isolated loop connecting the central core and the accretion disk. We found that the conductive heat flux of a flare heated the accretion disk up to coronal temperature and consequently the disk is evaporated and disappeard. This effect may explain the ovserved feature of the repeated flare from the young stellar object YLW 15.
We have developed a set of daily solar flare peak flux forecast models for strong flares using multiple linear regression and artificial neural network methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray flare peak flux and weighted total flux of previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The best three parameters related to the observed flare peak flux are weighted total flare flux of previous day (r = 0.51), X-ray flare peak flux (r = 0.48), and Mount Wilson magnetic classification (r = 0.47). A comparison between our neural network models and the previous models based on Heidke Skill Score (HSS) shows that our model for X-class flare is much better than the models and that for M-class flares is similar to them. Since all input parameters for our models are easily available, the models can be operated steadily and automatically in near-real time for space weather service.
A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.77 for flare classification and 0.83 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.
We have investigated solar flare probability depending on sunspot classification, its area, and its area change using solar white light data. For this we used the McIntosh sunspot groups with most flare-productive regions : DKI, DKC, EKI, EKC, FKI and FKC. For each group, we classified it into three sub-groups according to sunspot area change : increase, steady, and decrease. For sunspot data, we used the NOAA active region information for 11 years (from January 2000 to December 2010): daily sunspot class and its area corrected for the projection effect. As a result, we find that the mean flare rates and the flare probabilities for the "increase" sub-groups are noticeably higher than those for other sub-groups. In case of the (M+X)-class flares of 'kc' groups, the mean flare rates of the "increase" sub-groups are more than two times than those of the "steady" sub-groups. This is statistical evidence that magnetic flux emergence is an very important for triggering solar flares since sunspot area increase can be a good proxy of magnetic flux emergence. In addition, we have examined the relationship between sunspot area and solar flare probability. For this, we classified each sunspot group into two sub-groups: large and small. In the case of compact group, the solar flare probabilities noticeably increase with its area.
To find the relationship between solar flares and halo CMEs using stereoscopic observations, we investigate 182 flare-associated halo CMEs among 306 front-side halo CMEs from 2009 to 2013. We have determined the 3D parameters (radial speed and angular width) of these CMEs by applying StereoCAT to multi-spacecraft data (SOHO and STEREO). For this work, we use flare parameters (peak flux and fluence) taken from GOES X-ray flare list and 2D CME parameters (projected speed, apparent angular width, and kinetic energy) taken from CDAW SOHO LASCO CME catalog. Major results from this study are as follows. First, the relationship between flare peak flux (or fluence) and CME speed is almost same for both 2D and 3D cases. Second, there is a possible correlation between flare fluence and CME width, which is more evident in 3D case than 2D one. Third, the flare fluence is well correlated with CME kinetic energy (CC=0.63). Fourth, there is an upper limit of CME kinetic energy for a given flare fluence (or peak flux). For example, a possible CME kinetic energy ranges from 1030.6 to 1033 erg for a given X1.0 class flare. Our results will be discussed in view of the physical mechanism of solar eruptions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.