• Title/Summary/Keyword: flange

Search Result 1,076, Processing Time 0.023 seconds

Analysis on Induction Heating of Ring Flange for Wind Power (풍력발전용 링플랜지의 유도가열 해석)

  • Yun, D.W.;Park, H.C.;Lee, I.C.;Kim, S.Y.;Park, N.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.63-69
    • /
    • 2012
  • This paper presents an analysis on the induction heating of ring flange for wind farm. Ring flange is used for the connection of poles when building a column of wind power plant. Heat treatment of ring flange with the diameter of ${\O}1,000mm$ has been considered. For analysis on the induction heating, FEA is used. Firstly, electromagnetic filed analysis was performed to get the induction current distribution on the steel, After that, heat transfer analysis was performed using the magnetic filed analysis results. for more precise analysis, some measurement for permeability has been performed and the measurement data was used during the analysis. From the analysis, we get the temperature distribution on the ring flange.

Prediction of Springback Shape in the Flange Forming (유한요소법을 이용한 박판 플랜지 형상 예측)

  • Kim Y. T.;Lee S. W.;Jeon J. H.;Lim H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.86-91
    • /
    • 2005
  • The stack, the core unit of the MCFC system, is composed of the three main parts which are the electrodes, the matrix keeping the electrolyte and the separator. Among these, the separator made of low carbon steel is manufactured by some sheet metal forming processes. The flatness of flange of the mask plate of the separator is crucial not only to enhance the stack performance but also to reduce the production cost. This study has focused on the enhancement of flatness of the mask plate flange by controlling some process parameters like the punch and die comer radii, the blank holding force, the friction coefficient and so on. The springback phenomenon occurring in the flange drawing process has been studied first using the finite element method (FEM) in order to understand what causes the springback. The distribution pattern of local longitudinal stress in the flanged part has been revealed very important in predicting the final shape of the flange. This fact has been backed up by the experimental results carried out with the developed test dies.

  • PDF

Development of Manufacturing Process for Long-Neck Flange by Spinning (스피닝을 이용한 롱넥플랜지의 성형공정 개발)

  • Gwak, Gi Yeol;Cho, Jong Rae;Choi, Jin Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.929-935
    • /
    • 2015
  • The long neck flange is used to connect piping arrangements where the lap joint is applied. Generally, the component can be manufactured by welding, but this method is both time and cost intensive. Embrittlement at the heat affected zones was also considered. A spinning method developed to improve the manufacturing process and solve the problems of welding. The flange area of the long neck flange can be formed by changing the direction of the metal flow, from axial to radial, while maintaining pressure by using an outer mold and a lap roller. A modified process was additionally developed using a round roller rather than the outer mold. In this modification, the round roller can form the shape of all sizes of long neck flange. Using these flexible methodologies, the cost to prepare outer molds and the time to install and remove the molds can be significantly reduced.

Pultruded GFRP box beams: State-of-the-art review on constituents and structural behavior

  • Mozhdeh Dehshirizadeh;Abolfazl Eslami;Mehdi Khodadad Sar-Yazdi;Hamid R. Ronagh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • In recent decades, pultruded glass fiber-reinforced polymer (GFRP) members including those of box sections have attracted the attention of researchers. Nevertheless, the lack of uniform and consistent material properties, simplified design methods, and practical design codes have so far been the main barrier for field applications. Consequently, this paper highlights the existing knowledge concerning the flexural behavior of pultruded GFRP profiles and their failure modes. In particulate, it reviews the most commonly accepted design expressions and code provisions addressing the flange local buckling of pultruded GFRP box beams as the most likely failure mode. In addition, the material characterization of GFRP sections is described in detail along with the standard test methods to quantify the material characterization of GFRP laminates. It is shown that the critical flange local buckling stresses of pultruded GFRP box beams can be predicted with reliable accuracy using the expressions promulgated by ASCE (1984) (in which the flange plates are considered simply-supported at web-flange junction) and EUR 27666. The expressions stipulated in ASCE (2010) highly overestimates the critical flange local buckling stresses of GFRP box beams resulting in unconservative predictions.

Tensile Experiment and FE Analysis of L-type Flange Bolt Connection in Wind Turbine Support Structures (풍력터빈 지지구조물의 볼트 체결된 L형 플랜지에 대한 인장 실험 및 FE해석)

  • Dae-Jin Jung;Ik-Qhang Choi
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • In this study, a tensile test and FE analysis were conducted on a bolt-connected L-shaped flange to evaluate its behavior and load resistance. A total of five specimens were manufactured using the inner and outer distances and bolt diameters of the L-type flange as experimental variables. As a result of the tensile test of the L-shaped flange, as the internal and external length ratio (b/a) increased, the maximum load decreased and the maximum displacement increased. As the diameter (d) of the bolt increased, the maximum load and the deformation of the wall increased. The shapes of the destruction specimens showed two forms of destruction: one due to the fall of the nut and the surrender of the bolt as the thread of the bolt and nut was worn out, followed by the surrender of the wall. As a result of FE analysis, it was found that elasto-plastic model (EPM) analysis similarly tracks the behavior of the tensile test results.

An analysis of torsional flange-upsetting process based on slab method (슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석)

  • Jae-Hoon Park
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.

A forging die design to improve the flower shape of flange bolt (플랜지 볼트의 플라워 형상 결함 개선을 위한 단조 금형설계)

  • Kim, Kwan-Woo;Lee, Geun-Tae;Cho, Hae-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2016
  • Flange bolt has a circular flange under the head that acts like a washer to distribute the clamping load over a large area. Flange bolt has usually been manufactured by cold forging. Flower shape defect occurs in the flange forging stage. This defect causes lack of dimensional accuracy and low quality. So it is needed to improve these forging defects. In this study, die design method for flower shape defect of flange bolt was suggested. In order to improve flower shape defect, inner diameter of the addition die in conventional forging process was modified. The forging process with applied modified die was simulated by commercial FEM code DEFORM-3D. The simulated results for modified die were confirmed by experimental trials with the same condition.

A Study on the Development of Large Aluminum Flange using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • 배원병;왕신일;서명규;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.905-909
    • /
    • 2001
  • The significance of casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from $420^{\circ}C$ to $450^{\circ}C$. The suitable strain rate was 1.5 $sec^{-1}$. The deformation amount of a preform in a forging process is key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of cast preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for the low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeds 0.7. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

  • PDF

An Analytical Study of Flange Local Buckling of Horizontally Curved I-Girders for Estimate Resonable Stress Gradient (합리적 응력경도 산정을 위한 수평 곡선 I-형 거더의 플랜지 국부좌굴의 해석적 연구)

  • Kim, Hee-Soo;Lee, Kee-Sei;Lee, Jeong-Hwa;Choi, Jun-Ho;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6504-6510
    • /
    • 2015
  • Horizontally curved I-girders are subjected to not only bending moments but also torsional moments. The torsional moment of the plate girder is addition of St. Venant torsion and non-uniform torsion. In the flange of I-shaped plate girder, a kind of open-section, the normal stresses is not distributed uniformly due to the non-uniform torsion. Because of that, one of compression flange tip can be yielded faster than the flange of general straight girder. In other words, the flange local buckling strength is decreased when the girder has initial curvature. In this paper, the numerical analysis is conducted to investigate the average stresses in flange for curved girders. The subtended angle and slenderness ratio are taken as parameters.

A Numerical Study on Flexural Strength with the Spreading of Upper Reinforcement of Girder into the Adjoining Slab (보 상부철근의 슬래브 내 분산배근에 따른 휨강도의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1179-1185
    • /
    • 2007
  • The study of girder-to-column joints under experiment and numerical analysis was carried out to evaluate change of the flexural capacity of the joints with the 2-layer upper reinforcement of girder within rectangular section and the single-layered upper reinforcement at the girder flange. According to the analysis results using the flange width, the flange thickness and the location of reinforcements in the upper flange as variables, in the models with a same effective width, the increasing rate of capacity has nothing to do with the flange width with a same effective width. However, the capacity of the models with the upper reinforcements arranged close to the rectangular beam section is larger than that of the models with the upper reinforcements arranged remotely from the rectangular section. If the range of arrangement fur reinforcement exceeds the effective width, despite of increasing the flange thickness, the capacity is not increased.

  • PDF