• 제목/요약/키워드: flammable atmosphere

검색결과 23건 처리시간 0.023초

내압방폭을 위한 Safe Gap의 측정에 관한 연구 (A Study on the Safe Gap for Explosion-proof)

  • 오규형
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 1997
  • 가연성 가스가 존재하는 위험 분위기에서 전기기기를 사용할 경우 전기 스파크에 의한 폭발위험성이 존재하기 때문에 점화원을 격리시키거나 고립시키는 것이 필요하지만 현실적으로 점화원의 고립이 불가능하므로 폭발을 방지하기 위한 일반적인 방법으로 내압 방폭형전기기기를 사용하고 있다. 따라서 내압방폭기기의 내부에 침투한 가연성 가스가 폭발하여도 화염이나 열이 틈새를 통과하여 외부의 가연성 분위기를 점화시킬 수 없는 최대 틈새크기를 찾아야 할 필요가 있다. 본 논문에서는 수소-공기 혼합기와 메탄-공기 혼합기에 대하여 실험적 최대틈새크기(MESG)를 찾아내어 기존의 결과와 비교하고, MESG에 영향을 미치는 요인들을 찾아내고자 하였다. 실험장치는 내용적 8${\iota}$의 구형용기를 사용하였으며 실험 변수들로는 전화위치, 혼합기의 농도, 초기압력 등이었다. 실험결과 각각의 변수들에 의해 영향을 받으며 특히 농도와 초기압력에 크게 영향을 받는 것을 알 수 있었으며, 당량 농도 가까이에서 최소값을 나타내었으며 초기압력의 상승과 함께 MESG는 감소하였다.

  • PDF

다공질 ZnO의 전기적 특성, 환원성 가스 감응 특성 및 습도의 영향 (Electrical Conductivity, Flammable Gas Response and Humidity Effect of Pporous ZnO)

  • 윤당혁;최경만
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1283-1291
    • /
    • 1995
  • The electrical conductivity, flammable gas response and their humidity effect of porous ZnO, added with 5wt% corn starch as the fugitive phase, were examined. Porous ZnO showed different conductivity curves during increasing and decreasing temperature, and its electrical conductivity decreased rapidly by desorption of OH- between 20$0^{\circ}C$ and 35$0^{\circ}C$ when the temperature increased in dry air. The CO gas sensitivity of starchadded ZnO samples was higher than that of ZnO without starch addition. The sensitivity of porous, starchadded ZnO to 200ppm CO gas was much less in humid atmosphere than in dry atmosphere since water vapor increased the conductivity of porous ZnO in air, but decreased the conductivity in CO. Maximum sensitivity to 200 ppm CO gas balanced by air was about 100 in dry atmosphere and about 15 in RH 23% atmosphere.

  • PDF

Risk Analysis of Explosion in Building by Fuel Gas

  • Jo, Young-Do;Park, Kyo-Shik;Ko, Jae Wook
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.257-261
    • /
    • 2004
  • Leaking of fuel gas in a building creates flammable atmosphere and gives rise to explosion. Observations from accidents suggest that some explosions are caused by quantity of gas significantly less than the lower explosion limit amount required to fill the whole confined space, which might be attributed to inhomogeneous mixing of the leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the degree of mixing in the building. This paper proposes a method for estimating minimum amount of flammable gas for explosion assuming Gaussian distribution of flammable gas.

옷감 종류별 인체대전 정전기 방전에 의한 인화성물질 점화능력 (Ignition Ability of Flammable Materials by Human Body's Electrostatic Discharge by Type of Fabric)

  • 현종수
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Unwanted effects of electrostatic phenomena occur in various industries. Electrostatic problems originating from the human body in flammable atmospheres in the industry are especially concerning. A substantial volume of experimental data on the electrostatic charging voltages created on the human body owing to the rubbing of apparel were generated and reviewed during this study. The data were reviewed to determine whether the resultant charging levels of the human body are hazardous in flammable atmospheres. This study was conducted under several conditions, such as different fiber types used in apparel, shoe types, and relative humidities (RHs). The following conclusions were drawn in this study. ① The electrostatic charging levels of the human body owing to the rubbing of apparel increase with the increase in the surface resistances of apparel; however, the electrostatic charging levels may be different depending on the condition of the cloth surface. ② The discharging energy of 1.98-18.5 [mJ] from the human body exceeds the minimum ignition energy of most flammable materials, when removing an overcoat made of polyester, cotton and wool under severe conditions such as wearing height-raising shoes for men. ③ When removing antistatic apparel, the maximum discharging energy of 0.128 mJ from the human body is dangerous if the minimum ignition energy of the flammable material is between 10-5-10-4 [J] Grade; however, a minimum ignition energy of 10-3 J Grade of the flammable material is considered safe. ④ While wearing antistatic shoes, the electrostatic charging voltage generated in the human body when removing an overcoat is 30 V; therefore, wearing such shoes is a suitable countermeasure when handling flammable materials. However, the antistatic abilities of shoes reduce when thick socks are worn. ⑤ As RH increases, the electrostatic charging levels of the human body decrease. ⑥ The electrostatic charging levels of the human body from removing a cotton overcoat can ignite the majority of flammable materials when RH is less than 30% under severe conditions such as wearing height-raising shoes for men.

사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 II: 인화성 물질을 중심으로 (Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment II: Flammable)

  • 조은혜;신도연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권6호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, formaldehyde and benzene were selected as the arbitrary chemicals in accidental leakage to environment, and their physicochemical and biological characteristics and toxicity were studied. Also, the fate of these chemicals in soil and groundwater was studied based on the results of previous studies. They can be released into the atmosphere as gas or vapor phase, which then can be photochemically degraded. Since they have relatively high water solubility, they are likely to have high mobility in water and soil. Volatilization of these chemicals from soil is affected by the soil moisture content. Biodegradation of formaldehyde and benzene is one of the important pathways as well. Therefore, it is necessary to study the environmental impacts of leakage accidents of flammable chemicals such as formaldehyde and benzene. Further research on the fate of flammable chemicals in the environment is needed to take appropriate response actions to leakage accidents of flammable chemicals, and this will contribute to the development of practical guidelines to cope with leakage accidents.

밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측 (Estimate Minimum Amount of Methane for Explosion in a Confined Space)

  • 조영도
    • 한국가스학회지
    • /
    • 제21권4호
    • /
    • pp.1-5
    • /
    • 2017
  • 밀폐된 거주공간에서 주성분이 메탄으로 이루어진 천연가스 누출은 가연성 분위기를 형성여 폭발사고로 이어진다. 밀폐공간에서 폭발을 일으키기 위한 최소 매탄 누출양은 혼합정도에 크게 의존한다. 본 논문에서는 가우스분포모델과 폭발실험에 근거하여 폭발 사고가 발생할 수 있는 최소한의 메탄 누출량을 예측하기 위한 방법을 제시하고자 한다. 밀폐공간에서 높이에 따라 가연성가스의 농도분포는 가우스분포를 가지는 것을 가정하여 연소범위에 있는 가스의 최대량을 예측하고, 일정한 부피에서 예측된 가스가 연소되어 단열 또는 등온 혼합과정을 통하여 최종 폭발압력을 예측할 수 있다. 폭발사고에 의한 건물의 피해 정도에 대응하는 최소가스 누출양을 예측할 수 있다. 연구결과 건물 내 밀폐공간에서 아주 적은 양의 메탄가스가 누출되어도 심각한 폭발사고를 일으킬 수 있다. 이는 안전장치 개발에 있어서 적절한 조치를 취하기 전에 최소허용 가스 누출량을 설정하는 것에 유용하게 사용될 수 있을 뿐 만 아니라 폭발사고 조사에도 활용 될 수 있다.

물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구 (A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition)

  • 서민수;김기석;황용우;천영우
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.13-26
    • /
    • 2018
  • 현재 KS Code 등 국내규정에서는 폭발위험장소의 범위를 계산하는 방법이 명확하게 나타나지 않아, 정확한 범위 선정을 위해서는 확산 모델링 해석을 이용하여야 한다. 본 연구애서는 대표적인 물질과 운전조건을 활용하여 확산 모델링에 비하여 간편하면서도 비교적 합리적인 폭발위험장소의 범위를 산정하는 방법을 제시하고자 하였다. 현재 시행되고 있는 국내외 표준을 바탕으로 폭발하한계(LFL, Lower Flammable Limit)까지 거리에 영향을 미치는 변수를 선정하였다. 총 16종의 인화성물질을 대상으로 물질변수, 운전변수, 기상조건에 대하여 모델링을 진행하였으며, 통계분석을 통해 영향을 미치는 변수를 선별하였다. 선별된 변수를 이용하여 폭발위험장소의 범위 선정을 위한 3단계 분류화 방법(3Step Classification Method)을 작성하였다.

연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향 (Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF

3D 매트릭스 개질기를 활용한 모사 바이오가스 부분산화 및 수증기 영향 연구 (The Study of Effect of Steam on Partial Oxidation for Model Biogas using 3D Matrix Reformer)

  • 임문섭;전영남
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.772-779
    • /
    • 2011
  • New type of syngas generator based on the partial oxidation of biogas in volumetric permeable matrix reformers was suggested as an effective, adaptable and relatively simple way of syngas and hydrogen production for various low-scale applications. The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. Parametric screening studies were achieved as air ratio, biogas component ratio, input gas temperature, Steam/Carbon ratio. As the air ratio was low, the production of the hydrogen and carbon monoxide increased in the condition that 3D matrix reformer maintains the stable driving. As it was the simulation biogas in which the carbon dioxide content is high, the flammable range became narrow. And the flammable range was extended if the injected gas was preheated. The stable driving was possible in the low air ratio. The amount of hydrogen production was increased as S/C ratio increased.

A STUDY ON THE EXPLOSION SAFETY ASSESSMENT OF HYDROCARBON REFRIGERANT REFRIGERATOR

  • Oh, Kyu-Hyung;Kim, Min-Kyu;Chu, Euy-Sung;Lim, Byung-Han;Kim, Man-Hoe;Park, Yoon-Ser
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.289-296
    • /
    • 1997
  • This paper discribes an experimental explosion risk assessment study on refrigerators containing flammable hydrocarbon refrigerant. A refrigerator used in this study is a larder fridge type, 215 liter in volume. The hydrocarbon refrigerant used in the refrigerator is iso-butane(C$_4$H$_{10}$). For the explosion safety assessment of the refrigerator, temperature of compressor, cooling air circulation fan motor, defrost heater and inner lamp were measured during the operation. And to confirm the ignitablity of flammable gas by the electric spark of the switches of the refrigerator, ON-OFF test of all switches were conducted with compulsorily near the stoichiometric concentration atmosphere of iso-butane-air mixture. As the result of experiment above mentioned and another experiment for the explosion safety assessment, we can conclude that explosion hazard in connection with the use of hydrocarbon refrigerant was few.w.

  • PDF