• Title/Summary/Keyword: flammable atmosphere

Search Result 23, Processing Time 0.021 seconds

A Study on the Safe Gap for Explosion-proof (내압방폭을 위한 Safe Gap의 측정에 관한 연구)

  • Oh Kyu-hyung
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • In case of using the electrical apparatus in the hazardous atmosphere which exist flammable gas mixtures, There is a dangerosity of gas explosion accident by the electrical spark. The most general method to prevent the explosion by the spark is to use the flame-proof type electrical apparatus to isolate the ignition source. from the flammable atmosphere. But actualy it is impossible to isolate the ignition sources from the atmosphere. So it was needed to find the safe gap which prevent ignition of flammable atmosphere by transmission of flame or heat when a flammable gas mixture exploded inside the apparatus. In this study we tried to find the maximum experimental safe gap(MESG) of $H_2$-air, and $CH_4$-air mixtures by using the 8 litre spherical vessel with 25mm flange. The experiment parameter were ignition position, concentration and initial pressure before explosion. From the experiment the ignition position was affected to the MESG. MESG value was minimum near the stoichiometric concentration of gas mixtures, and according to the increase of initial pressure MESG was decreased.

  • PDF

Electrical Conductivity, Flammable Gas Response and Humidity Effect of Pporous ZnO (다공질 ZnO의 전기적 특성, 환원성 가스 감응 특성 및 습도의 영향)

  • 윤당혁;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1283-1291
    • /
    • 1995
  • The electrical conductivity, flammable gas response and their humidity effect of porous ZnO, added with 5wt% corn starch as the fugitive phase, were examined. Porous ZnO showed different conductivity curves during increasing and decreasing temperature, and its electrical conductivity decreased rapidly by desorption of OH- between 20$0^{\circ}C$ and 35$0^{\circ}C$ when the temperature increased in dry air. The CO gas sensitivity of starchadded ZnO samples was higher than that of ZnO without starch addition. The sensitivity of porous, starchadded ZnO to 200ppm CO gas was much less in humid atmosphere than in dry atmosphere since water vapor increased the conductivity of porous ZnO in air, but decreased the conductivity in CO. Maximum sensitivity to 200 ppm CO gas balanced by air was about 100 in dry atmosphere and about 15 in RH 23% atmosphere.

  • PDF

Risk Analysis of Explosion in Building by Fuel Gas

  • Jo, Young-Do;Park, Kyo-Shik;Ko, Jae Wook
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • Leaking of fuel gas in a building creates flammable atmosphere and gives rise to explosion. Observations from accidents suggest that some explosions are caused by quantity of gas significantly less than the lower explosion limit amount required to fill the whole confined space, which might be attributed to inhomogeneous mixing of the leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the degree of mixing in the building. This paper proposes a method for estimating minimum amount of flammable gas for explosion assuming Gaussian distribution of flammable gas.

Ignition Ability of Flammable Materials by Human Body's Electrostatic Discharge by Type of Fabric (옷감 종류별 인체대전 정전기 방전에 의한 인화성물질 점화능력)

  • Jong Soo Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Unwanted effects of electrostatic phenomena occur in various industries. Electrostatic problems originating from the human body in flammable atmospheres in the industry are especially concerning. A substantial volume of experimental data on the electrostatic charging voltages created on the human body owing to the rubbing of apparel were generated and reviewed during this study. The data were reviewed to determine whether the resultant charging levels of the human body are hazardous in flammable atmospheres. This study was conducted under several conditions, such as different fiber types used in apparel, shoe types, and relative humidities (RHs). The following conclusions were drawn in this study. ① The electrostatic charging levels of the human body owing to the rubbing of apparel increase with the increase in the surface resistances of apparel; however, the electrostatic charging levels may be different depending on the condition of the cloth surface. ② The discharging energy of 1.98-18.5 [mJ] from the human body exceeds the minimum ignition energy of most flammable materials, when removing an overcoat made of polyester, cotton and wool under severe conditions such as wearing height-raising shoes for men. ③ When removing antistatic apparel, the maximum discharging energy of 0.128 mJ from the human body is dangerous if the minimum ignition energy of the flammable material is between 10-5-10-4 [J] Grade; however, a minimum ignition energy of 10-3 J Grade of the flammable material is considered safe. ④ While wearing antistatic shoes, the electrostatic charging voltage generated in the human body when removing an overcoat is 30 V; therefore, wearing such shoes is a suitable countermeasure when handling flammable materials. However, the antistatic abilities of shoes reduce when thick socks are worn. ⑤ As RH increases, the electrostatic charging levels of the human body decrease. ⑥ The electrostatic charging levels of the human body from removing a cotton overcoat can ignite the majority of flammable materials when RH is less than 30% under severe conditions such as wearing height-raising shoes for men.

Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment II: Flammable (사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 II: 인화성 물질을 중심으로)

  • Jho, Eun Hea;Shin, Doyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, formaldehyde and benzene were selected as the arbitrary chemicals in accidental leakage to environment, and their physicochemical and biological characteristics and toxicity were studied. Also, the fate of these chemicals in soil and groundwater was studied based on the results of previous studies. They can be released into the atmosphere as gas or vapor phase, which then can be photochemically degraded. Since they have relatively high water solubility, they are likely to have high mobility in water and soil. Volatilization of these chemicals from soil is affected by the soil moisture content. Biodegradation of formaldehyde and benzene is one of the important pathways as well. Therefore, it is necessary to study the environmental impacts of leakage accidents of flammable chemicals such as formaldehyde and benzene. Further research on the fate of flammable chemicals in the environment is needed to take appropriate response actions to leakage accidents of flammable chemicals, and this will contribute to the development of practical guidelines to cope with leakage accidents.

Estimate Minimum Amount of Methane for Explosion in a Confined Space (밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2017
  • Leaking of natural gas, which is mostly methane, in a confined living space creates flammable atmosphere and gives rise to explosion accident. The minimum amount of leaked methane for explosion is highly dependent on the degree of mixing in the confined space. This paper proposes a method for estimating minimum amount of flammable gas for explosion by using Gaussian distribution explosion model(GDEM) and experimental explosion data. The explosion pressure in the confined space can be estimated by assuming the Gaussian distribution of flammable gas along the height of an enclosure and estimating the maximum amount of gas within flammable limits, combustion of the estimated gas with constant volume and adiabatic or isothermal mixing in the confined space. The predicted minimum gas amount for an explosion is tied to explosion pressure that results in a given building damage level. The result shows that very small amount of methane leaking in the confined space may results in a serious gas explosion accident. This result could be applied not only to setting the leak criteria for developing a gas safety appliance but also to accident investigating of explosion.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission (연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF

The Study of Effect of Steam on Partial Oxidation for Model Biogas using 3D Matrix Reformer (3D 매트릭스 개질기를 활용한 모사 바이오가스 부분산화 및 수증기 영향 연구)

  • Lim, Mun-Sup;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.772-779
    • /
    • 2011
  • New type of syngas generator based on the partial oxidation of biogas in volumetric permeable matrix reformers was suggested as an effective, adaptable and relatively simple way of syngas and hydrogen production for various low-scale applications. The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. Parametric screening studies were achieved as air ratio, biogas component ratio, input gas temperature, Steam/Carbon ratio. As the air ratio was low, the production of the hydrogen and carbon monoxide increased in the condition that 3D matrix reformer maintains the stable driving. As it was the simulation biogas in which the carbon dioxide content is high, the flammable range became narrow. And the flammable range was extended if the injected gas was preheated. The stable driving was possible in the low air ratio. The amount of hydrogen production was increased as S/C ratio increased.

A STUDY ON THE EXPLOSION SAFETY ASSESSMENT OF HYDROCARBON REFRIGERANT REFRIGERATOR

  • Oh, Kyu-Hyung;Kim, Min-Kyu;Chu, Euy-Sung;Lim, Byung-Han;Kim, Man-Hoe;Park, Yoon-Ser
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.289-296
    • /
    • 1997
  • This paper discribes an experimental explosion risk assessment study on refrigerators containing flammable hydrocarbon refrigerant. A refrigerator used in this study is a larder fridge type, 215 liter in volume. The hydrocarbon refrigerant used in the refrigerator is iso-butane(C$_4$H$_{10}$). For the explosion safety assessment of the refrigerator, temperature of compressor, cooling air circulation fan motor, defrost heater and inner lamp were measured during the operation. And to confirm the ignitablity of flammable gas by the electric spark of the switches of the refrigerator, ON-OFF test of all switches were conducted with compulsorily near the stoichiometric concentration atmosphere of iso-butane-air mixture. As the result of experiment above mentioned and another experiment for the explosion safety assessment, we can conclude that explosion hazard in connection with the use of hydrocarbon refrigerant was few.w.

  • PDF