• Title/Summary/Keyword: flammable

Search Result 509, Processing Time 0.025 seconds

메탄 및 LNG 폭발 특성에 관한 연구

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.273-278
    • /
    • 1998
  • 여러가지 연소특성들은 가연성물질의 취급함에 있어 밸브조작실수, 배관접합부 파손. 저장 및 수송의 부주의로 주위에 공기와 혼합되면 화재 및 폭발이 발생할 수 있는 잠재적 위험성을 평가할 수 있다. 여러 연소특성 가운데 폭발(연소)한계(explosive (flammable) limits)는 가연성물질(가스 및 증기)을 다루는 화학공정에 있어 설계시 고려해야 할 가장 중요한 변수로써, 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도 범위내에서만 연소가 이루어지는 혼합범위를 말한다. (중략)

  • PDF

Assessment of material analysis for Non-flammable of cable (케이블 연소방지제의 재료에 대한 성능평가 기술)

  • Soh, Jin-Joong;Shim, Dae-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1472-1474
    • /
    • 2003
  • 연소방지재(난연테이프, 난연도료, 난연seal, 난연레진, 난연보드 등)란 지중 배전케이블, 접속재 및 통신케이블 등의 외피에 화재확산 방지를 위해 도포하여 사용하는 것으로서 화재 시 발포하거나 단열의 효과가 있어 케이블, 전선 등이 연소하는 것을 지연시킨다. 따라서 본 평가 기술에서는 수직불꽃시험, 산소지수, 저 염소시험, 발연농도, 케이블 허용전류저감률 등 주 재료시험에 대한 시험방법을 검토하고 시험에 적용하여 시험 시 문제점을 도출하여 시험방법을 정립하고자 한다.

  • PDF

Surveillance System For Underground Power Transmission Lines (초고압 지중선로 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.618-620
    • /
    • 1993
  • This system using optical fiber provides various information about underground tunnel and power transmission lines-atmospheric temperature, humidity, oil pressure, flammable gas, cable behavior, and so on. To transmit various data and to keep reliability, optical MUXs are adopted. User can easily operate monitoring software by using GUI.

  • PDF

Experimental Study of flash point determination for Alcohols & Aromatic Compounds. (가연성 액체의 인화점 추정에 관한 실험적 연구)

  • 최세환;김광일
    • Fire Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.24-28
    • /
    • 1993
  • The flash point for flammable liquids (alcohol, aromatic compounds) were measured by Penskt-Martens's measuring apparatus with closed cup. As a result, it was observed that the flash points had the regular tendency according to the carbon number and the molecular structure. Consequently, the flash point for the alcohols were increased in proportion to the increase of the carbon number and branch number. The differences between the literature and experimental data are 14.6% for the relative error and 3.46$^{\circ}C$ in average for the measuring temperature.

  • PDF

EXPLOSION HAZARDS IN TANKS OF HIGH FLASH POINT LIQUIDS

  • Zalosh, Robert
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.203-210
    • /
    • 1997
  • Reports of explosions in cargo and storage tanks of high flash point liquids such as residual fuel oil, asphalt, and oily waste water have shown that these explosions have occurred even when the liquid temperatures are well below the liquid nominal flash point. The reasons for these seemingly paradoxical explosions are reviewed and results of recent laboratory tests are presented to better define the conditions leading to flammable vapor atmospheres in these tanks. The potential effectiveness of various prevention measures are discussed including inerting, monitoring tank vapor concentrations, and periodic cleaning of condensation and deposits on the tank walls and roof.

  • PDF

A Study on the MESG of Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 MESG에 관한 연구)

  • Hwang, Kyungyong;Byeon, Junghwan;Rhee, Kyunam;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.30-37
    • /
    • 2016
  • Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.

Prediction of Temperature Dependence of Explosion Limits and Interrelationship of Explosion Characteristics for Akylketones (알킬케톤류의 폭발 특성치 간의 상관관계 및 폭발한계의 온도의존성 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.7-13
    • /
    • 2006
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion characteristics. The explosion limit, the heat of combustion, flame temperature and temperature dependence of the lower explosive limit are the major combustion characteristics used to determine the fire and explosion hazards of the flammable substances. The aim of this study is to investigate interrelationship of explosion characteristics and the temperature dependence of the lower explosion limit at elevated temperature for akylketones. By using the reference data, the empirical equations which describe the interrelationships of explosion properties of akylketones have been derived. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosion limits of akylketones on the basis of the literature data are proposed. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable substances.

  • PDF

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.