• Title/Summary/Keyword: flames

Search Result 983, Processing Time 0.027 seconds

Experimental Installation of Pressure Oscillation based on Pulse-driving Technique

  • YANG, Tian-hao;LIU, Pei-jin;JIN, Bing-ning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.58-61
    • /
    • 2015
  • Under the background of combustion instability in solid rocket motor, to study the relationship between pressure oscillations and dynamic process of propellant flames, it is necessary to simulate an oscillation environment with certain frequency, amplitude and duration. This paper presents an experimental installation of pressure oscillation based on pulse-driving technique, with which pressure oscillations features under different pulse-driving conditions were compared and analyzed. For the pulse-driver applied in this paper, a pressure oscillation with 0.15s-0.5s duration, 179Hz-210Hz first order frequency, 0.04MPa-0.35MPa amplitude is simulated. The test results show that an oscillation with higher frequency and lager amplitude can be obtained when pulse-driver is installed on the top of the installation cavity, while on the side, an oscillation with a longer duration and approximate cavity natural frequency can be simulated.

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Emissions in lean-lean two-stage combustion using premixed tubular flames

  • Takagi, Hideyuki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.466-471
    • /
    • 2004
  • In gas turbines, excess air for combustion is available and therefore lean premixed combustion is the most promising approach to the significant reduction of thermal NOx emissions. At lean conditions, however, flame stability is inherently worse and hence combustion tends to be incomplete. Efforts have been devoted toward extending the operating range of complete combustion at leaner conditions. One of them is the lean-lean two-stage combustion where lean to ultra-lean secondary mixtures are mixed with the hot burned gas from the primary stage. Conventional flame combustion or flameless reaction are initiated depending on the conditions of the secondary zone. In the first part of the present study, the effects of fuel injection on the emissions and flame stability were investigated for a single tubular flame, In the second part, the emissions and flame stability were studied for a two-stage combustor with secondary mixture injected through the tangential slots on a cylindrical combustor wall. The effects of the ratio of air flow rates to the primary and secondary zones on the emissions and combustion characteristics were investigate.

  • PDF

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

Fundamental Study on the Development of the EGR Efficiency (Part I: Effects of Reformer Gas Addition in $CH_4/air$ Premixed Flames) (다양한 연료의 EGR 성능개선에 관한 기초연구(Part I: 메탄/air 예혼합화염에서 RG의 첨가효과))

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Tak, Young-Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • In this study, the effect of reformer gas(RG) on the performance development of the exhaust gas recirculation(EGR) was investigated numerically in $CH_4/air$ premixed flame. Typically EGR is used to reduce the flame temperature and NOx emission, whereas RG can be used to improve the flame stability, such as homing velocity. This competitive relationship is focused in this study. As a result, it can be identified that the adjustments of EGR and RG ratio can achieve the low NOx emission and the similar flame stability to pure $CH_4/air$ premixed flame simultaneously.

  • PDF

Experimental Studies on the Interactions between Propagating Flames and Different Multiple Obstacles in an Explosion Chamber with a L/D Ratio of 0.57 (0.57의 L/D 비를 가지는 폭발챔버에서 전파하는 화염과 다중 장애물의 상호작용에 관한 실험적 연구)

  • Park, Dal-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.70-77
    • /
    • 2012
  • Experimental investigations were performed to examine the characteristics of propagating flame fronts around multiple bars within a rectangular chamber. The explosion chamber is 400 mm in height, $700{\times}700mm^2$ in cross-section and has a large top-venting area, $A_v$, of $700{\times}210mm^2$. This results in a value of 0.44 for $A_v/V^{2/3}$ and a L/D value of 0.57. The multiple obstacles of length 700 mm with a blockage ratio of 30 % were placed within the chamber. Temporally resolved flame front images were recorded by a high speed video camera to investigate the interaction between the propagating flame and the obstacles. Results showed that the flame propagation speeds before the flame impinges onto the obstacle almost equal to the laminar burning velocity. As the propagating flame impinged on the obstacle, the central region of flame began to become concave, this resulted in the flame deceleration in the region. As the flame interacted with the modified flow filed generated behind the central obstacle, the probability density functions(PDFs) of the local flame displacement speed were extensively distributed toward higher speeds.

A Study of Characteristics of NOx Emission in Lobed Burner (로브형 버너에서의 NOx 배출 특성에 관한 연구)

  • Cho, H.C.;Cho, K.W.;Lee, Y.K.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To evaluate the effect of lobed structure on pollutant emission, an experimental study examines NOx and CO emissions associated with four burner geometries, such as a conventional circular burner and three lobed ones. Rapid mixing allowed by the lobed burner to produce lean premixed flames, with narrower flame stability diagram than for the conventional circular one. Conventional circular burner of wide and uniform burner rim has an advantage of flame stabilization. Correlation on fuel discharge velocity for flame blowout should be included a variable related to the wall effect of the burner. NOx emission reduces by about 5% at the burner with lobed structure in fuel discharge side compared to conventional circular one. This is due to lower flame temperatures through flame elongation and increased radiative heat losses, caused by partially luminous flame in flame front. Meanwhile, at the burner with lobed structure in air discharge side and both fuel and air discharge sides, NOx emission somewhat increases with reduced radiative heat losses in spite of flame elongation. Therefore, the rapid mixing by lobed structure does not always have an advantage on NOx reduction.

  • PDF

A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor (연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

Combustion Stability Characteristics of the Model Chamber with Various Configurations of Triplet Impinging-Jet Injectors

  • Sohn Chae-Hoon;Seol Woo-Seok;Shibanov Alexander A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.874-881
    • /
    • 2006
  • Combustion stability characteristics in actual full-scale combustion chamber of a rocket engine are investigated by experimental tests with the model (sub-scale) chamber. The present hot-fire tests adopt the combustion chamber with three configurations of triplet impinging-jet injectors such as F-O-O-F, F-O-F, and O-F-O configurations. Combustion stability bound-aries are obtained and presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio. From the experimental tests, two instability regions are observed and the pressure oscillations have the similar patterns irrespective of injector configuration. But, the O-F-O injector configuration shows broader upper-instability region than the other configurations. To verify the instability mechanism for the lower and upper instability regions, air-purge acoustic test is conducted and the photograph or the flames is taken. As a result, it is found that the pressure oscillations in the two regions can be characterized by the first impinging point of hydraulic jets and pre-blowout combustion, respectively.