• Title/Summary/Keyword: flame temperature

Search Result 1,302, Processing Time 0.029 seconds

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation (복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석)

  • 임인권;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

Soot Deposition Process in a Diffusion Flame to the Wall under Microgravity (미소중력환경하에서의 확산화염내 매연입자의 벽면부착 관찰)

  • Choi, Jae-Hyuk;Fujita, Osamu;Yoon, Suck-Hun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.87-92
    • /
    • 2005
  • Experiments at the Japan Microgravity Center(JAMIC) have investigated the interaction between diffusion flames and solid surfaces placed near flames. The fuel for the flames was $C_2H_4$. The surrounding oxygen concentration was 35% with temperatures of $T_a$=300. Especially, the effect of wall temperature on soot deposition from a diffusion flame placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures, $T_w$=300,800K, were selected as test conditions. The results showed that the soot distribution between flame and burner wall was strongly affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values for two different wall temperatures suggested that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

  • PDF

Effects of Additive and Preheat on the Partially Premixed $CH_4-Air$ Counter Flow Flames Considering Non-gray Gas Radiation

  • Park Won-Hee;Chang Hee-Chul;Kim Tae-Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.242-250
    • /
    • 2006
  • Detailed structures of the counterflow flames formed for different inlet fluid temperatures and different amount of additives are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN-II code. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique (WSGGM-RG) are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the counterflow flames. The results compared with those obtained by using the SNB model show that the WSGGM-RG is very successful in modeling the counterflow flames with non-gray gas mixture. The numerical results also show that the addition of $CO_2\;or\;H_2O$ to the oxidant lowers the peak temperature and the NO concentration in flame. But preheat of fuel or oxidant raises the flame temperature and the NO production rates. $O_2$ enrichment also causes to raise the temperature distribution and the NO production in flame. And it is found that the $O_2$ enrichment and the fuel preheat were the major parameters in affecting the flame width.

A Study on NOx Emission and the Characteristics of Partially Premixed Flame (부분 예혼합 화염의 NOx 배출과 화염특성에 관한 실험적 연구)

  • Choi, Ju-Seok;Chun, Chul-Kyun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.156-162
    • /
    • 2001
  • The effects of co-flow and the variation of the equivalence ratio on NOx emission were investigated experimentally for unconfined and confined partially premixed flames. The shape, length, temperature of flames and the concentration of burnt gas were measured. Two types of co-flow (parallel and swirling co-flow) were considered. For unconfined flames, flame with parallel co-flow is the longest and the next is flame without co-flow. Flame with swirl is the shortest. The length of swirling flame increases suddenly under certain value of equivalence ratio. EINOx is diminished by the decrease of equivalence ratio. It is found that the unconfining of flame enhances the emission of NOx. The EINOx of unconfined flame with parallel co-flow is less than that of flame without co-flow.

  • PDF

Calculation of Stretched Laminar Diffusion Flame Using the Coherent Flame Sheet Model (코히어런트 화염면 모델을 이용한 스트레치 층류 확산 화염의 수치 계산)

  • 정진은;진영욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • The transient process simplified by the 1-D stretched laminar flame formed at the fuel-oxidizer interface was investigated using the coherent flame sheet model. Under the combustion environment of high temperatures and pressures the results show that the time required to reach the steady state was relatively short compared to the reverse of strain rate. Hence the employment of the tabulation of precalculated steady-flame results in the calculation of turbulent diffusion flames using the coherent flame sheet model is concluded valid, Also upstream temperatures were found to have only a minor effect on the nondimensional flame temperature and nondimensional fuel even through the letter is sensitive to pressure changes.

  • PDF

An Experimental Study on the Combustion Phenomena in Porous Media (다공질 내부의 연소현상에 대한 실험적 연구)

  • Lee, Yong-Il;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.321-327
    • /
    • 1996
  • Experiments were performed on the laminar premixed flame stabilized in a porous medium to know whether the flame downstream of the combustor exists or not. In previous theoretical studies, a stable flame has been predicted in the downstream region of the combustor, but it has never been observed in experiments. In this study, a stable downstream flame could be obtained for the lower burning velocity through circumferential heating by a blue flame positioned outside the periphery of the specially devised combustor. The existence of the stable downstream flame was confirmed by a direct photography of soot line, and temperature measurements. The effect of combustor diameter to flame stability was also considered. As the diameter of the combustor increases, the lean flammability limit was extended.

The Effect of Swirl Intensity on Flow and Combustion Characteristics of Flat Flame Burner (선회도가 평면화염버너의 유동과 연소 특성에 미치는 영향)

  • Jeong, Yong-Gi;Kim, Gyeong-Cheon;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.336-344
    • /
    • 2002
  • In this study, the flow and combustion characteristics of flat flame burner with twirler were investigated. There are several factors that define the characteristics of burner. Among them, the experiments was focused on swirl effect by four types of twirler in terms of flow structure, distribution of temperature and emission characteristics. In PIV(Particle Image Velocimetry) experiment, the less of swirl number, axial flow is dominant at the center. As swirl number increases, the flow develops along the burner tile and backward flow becomes stronger at center. From the combustion characteristics, as long as combustion load increases, blow-off limit was improved. But at the higher swirl number, the limit is decreased. At swirl number 0, the temperature is shown typical distribution of long flame burner. but swirl number increases, the temperature distribution is uniform in front of round tile. Therefore, the temperature distribution is coincided with flow structure. As excess air ratio increases, NO concentrations are high. But high swirl number gives rise to become low NO concentrations. The flame characteristics are comprised in wrinkled laminar-flame regime according to turbulence Reynolds number(Rel) and Damkohler number(Da).