• 제목/요약/키워드: flame structure

검색결과 610건 처리시간 0.025초

활성화에너지점근법의 재고찰 (II) - 예혼합화염영역에서 확산화염구조 (Activation Energy Asymptotics Revisited (II) - Diffusion-Flame Structure in the Premixed-Flame Regime)

  • 김종수
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.35-46
    • /
    • 2004
  • Activation energy asymptotics (AEA) for Linan#s premixed-flame regime is revisited in this paper. First, the detailed AEA procedure for the premixed-flame regime is demonstrated, so that the practitioners of AEA could easily apply the method to their own problems. In addition, the controversies surrounding the premixed-flame regime, namely the closure controversy and fast-time instability paradox, are explained. Finally, the limitation of AEA, mainly arising from the wrong prediction of fuel leakage through the reaction zone, is examined and the Zel#dovich-Linan kinetics is introduced as an alternative to meet the needs of modern combustion analysis, where the detailed chemical structure of flame is demanded.

  • PDF

전도성 원형관 내에 안정화된 예혼합 화염의 구조와 경계 조건에 관한 이론해석 (An Analytical Study on The Structure and Boundary Conditions of The Premixed Flame Stabilized in Conductive Cylindrical Tubes)

  • 김남일
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.8-17
    • /
    • 2006
  • When a flame is stabilized in a tube of a finite thickness, a conductive heat transfer through the tube significantly changes the wall temperature and affects the flame characteristics. Thus the tube length and thermal boundary conditions affect on the structure of the flame in a conductive tube. A one-dimensional analytical study was conducted by employing two energy equations for tubes and mixtures and a species equation for the mixture. Variation of the maximum temperatures and indicating displacements were observed. A parametric study on the effects of inner Peclet numbers, normalized wall conductivities, and heat transfer conditions of the tube was conducted. This study provides essential data for a more efficient computational simulation of the flame stabilized in conductive tubes.

  • PDF

과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조 (Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment)

  • 이기용;권영석
    • 한국연소학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF

On the Large Eddy Simulation of High Prandtl Number Scalar Transport Using Dynamic Subgrid-Scale Model

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.173-182
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

Numerical Modeling of Turbulent Nonpremixed Lifted Flames

  • Kim, Hoojoong;Kim, Yongmo;Ahn, Kook-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.167-172
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(II) (A Study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder(II))

  • 강인구;이우섭;문중권;이도형
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.29-35
    • /
    • 1999
  • The purpose of study is to investigate the flame stability and structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. PDFs and Power Spectra technique of fluctuating temperature and ion current measurement were needed for this purpose. We discussed that the three types of stabilized flames were found as the result of post study. In this paper, we established the stability mechanism near the flame holder.

  • PDF

음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구 (A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame)

  • 이기만;오세기;박정
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.

역확산화염에서 부상 상태의 진동현상에 관한 연구 (The Periodic Motion of Lifted Flames in Inverse Coflow Jets)

  • 원장혁;서정일;배수호;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.73-78
    • /
    • 2006
  • The lifted oscillating flame has been studied using experiments of inverse diffusion flames that the air jet injected into a methane background. To find out the characteristics of inverse diffusion flames, fundamentally flame stabilized diagram is investigated with various air and fuel jet velocities. It has five regions - flame extinction, stable attached flame, anchored flame, liftoff flame and blow off region. In inverse diffusion flame, lifted flames were observed near the blow off region. As long as flames lift off, flames oscillate by periods. In this oscillating lifted flame region, the frequency of 1 and under were observed in various air and methane jet velocities. Characteristics of lifted flames are also examined by using the ICCD direct image. And intensity of flame chemiluminescence is very different in rising and falling period from photographs. For the present, it is predicted that the changes of flame structure are related with flame oscillation, but more experiments will be needed to make clear the phenomenon.

  • PDF

메탄-공기 확산화염에서 수소와 수증기 첨가가 화염구조와 NOx 배출에 미치는 효과 (Effects of Addition of Hydrogen and Water Vapor on Flame Structure and NOx Emission In $CH_4$-Air Diffusion Flame)

  • 박정;길상인;윤진한
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.171-181
    • /
    • 2007
  • Blending effects of hydrogen and water vapor on flame structure and NOx emission behavior are numerically studied with detailed chemistry in methane-air counterflow diffusion flames. The composition of fuel is systematically changed from pure methane and pure hydrogen to the blending fuels of methane-hydrogen-water vapor through the molar addition of $H_2O$. Flame structure is changed considerably for hydrogen-blending methane flames and hydrogen-blending methane flames diluted with water vapor in comparison to pure methane flame. These complicated changes of flame structures also affect NOx emission behavior considerably. The changes of thermal NO and Fenimore NO are analyzed for various combinations of the fuel composition. Importantly contributing reaction steps to thermal NO and Fenimore NO are addressed in pure methane, hydrogen-blending methane flames, and hydrogen-blending methane flames diluted with water vapor.

메탄-수소 대향류확산화염에서 H2와 H의 선호확산을 통한 화학적 효과에 관한 연구 (A Study on Chemical Effecta Through Preferential Diffusion of H2 and H in CH4-H2 Counterflow Diffusion Flames)

  • 박정;권오붕;이의주;윤진한;길상인
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1009-1016
    • /
    • 2007
  • Numerical study on preferential diffusion effects in flame structure in $CH_4-H_2$ diffusion flames is conducted with detailed chemistry. Comparison of flame structures with mixture-averaged species diffusion and suppression of the diffusivities of $H_2$ and H was made. Discernible differences in flame structures are displayed with three species diffusion models. The behaviors of maximum flame temperatures with those species diffusion models are not explained by scalar dissipation rate but by the nature of chemical kinetics. It is seen that the modifcation of flame structure is mainly due to the preferential diffusion of H2 and thereby the nature of chemical kinetics. It is also found that the behaviors of major species with the three species diffusion models are addressed to the nature of chemical kinetics, and this is evident by examining importantly contributing reaction steps to the production and destruction of those chemical species.