On the Large Eddy Simulation of High Prandtl Number Scalar Transport Using Dynamic Subgrid-Scale Model

  • Na, Yang (Center for Multidisciplinary Aerospace System Design, Department of Mechanical Engineering, Konkuk University)
  • Published : 2004.01.01

Abstract

The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

Keywords

References

  1. Cabot, W. and Moin, P., 1993, 'Large Eddy Simulation of Scalar Transport with the Dynamic Subgrid-Scale Model,' in Large Eddy Simulation of Complex Engineering and Geophysical Flows, ed. B. Galperin and S. A. Orszag, Cambridge University Press
  2. Clark, R. A., Ferziger, J. H. and Reynolds, W. C., 1979, J. Fluid Mech., Vol. 91, p. 1 https://doi.org/10.1017/S002211207900001X
  3. Erlebacher, G., Hussaini, M. Y., Speziale, C. G. and Zang, T. A., 1990, 'Toward the Large-eddy Simulation of Compressible Turbulent Flows,' ICASE Rep. 90-76, NASA/Langley Research Center
  4. Germano, M., Piomelli, U., Moin, P. and Cabot, W. 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Phys. Fluids A 3(7), pp. 1760-1765 https://doi.org/10.1063/1.857955
  5. Ghosal, S., 1996, 'An Analysis of Numerical Errors in Large Eddy Simulations of Turbulence,' J. Comput. Physics, Vol. 125, pp. 187-206 https://doi.org/10.1006/jcph.1996.0088
  6. Kasagi, N., Tomita, Y. and Kuroda, A., 1992, 'Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow,' ASME J. Heat Transfer, Vol. 114, pp. 598-606 https://doi.org/10.1115/1.2911323
  7. Kim, J., Moin, P. and Moser, R., 1989, 'Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,' J. Fluid Mech., Vol. 177, pp. 133-166 https://doi.org/10.1017/S0022112087000892
  8. Lilly, D. K., 1992, 'A Proposed Modification of the Germano Subgrid-Scale Closure Method,' Phys. Fluids, A 4, pp. 633-635
  9. Na, Y., Papavassiliou, D. V. and Hanratty, T. J., 1999, 'Use of Direct Numerical Simulation to Study the Effect of Prandtl Number on Temperature Fields,' Int. J. Heat Fluid Flow, Vol. 20, pp. 187-195 https://doi.org/10.1016/S0142-727X(99)00008-9
  10. Orsazg, S. A., Staroselsky, I. and Yakhot, V. Y., 'Some Basic Challenges for Large Eddy Simulation Research,' in Large Eddy Simulation of Complex Engineering and Geophysical Flows, ed. by B. Galperin and S. A. Orszag, Cambridge University Press
  11. Piomelli, U., Cabot, W., Moin, P. and Lee, S., 1991, 'Subgrid-scale Backscatter in Turbulent and Transitional Flow,' Phys. Fluids A 3(7), pp. 1766-1771 https://doi.org/10.1063/1.857956
  12. Rogers, M., Moin, P. and Reynolds, W. C., 1986, 'The Structure and Modeling of the Hydrodynamic and Passive Scalar Fields in Homogeneous Turbulent Shear Flow,' Rep. TF-25, Stanford University, Dept. of Mechanical Engineering
  13. Spalart, P. R., Moser, R. D. and Rogers, M., 1991, 'Spectral Methods for the Navier-Stokes Equations with One Infinite and Two Periodic Directions,' J. Comput. Phys., Vol. 96, pp. 297-324 https://doi.org/10.1016/0021-9991(91)90238-G
  14. Subramanian, C. S. and Antonia, R. A., 1981, 'Effect of Reynolds Number on a Slightly Heated Turbulent Boundary Layer,' Int. J. Heat Mass Trans., Vol. 24(11), pp. 1833-1846 https://doi.org/10.1016/0017-9310(81)90149-6
  15. Vreman, B., Geurts, B. and Kuerten, H., 1997, 'Large Eddy Simulation of the Turbulent Mixing Layer,' J. Fluid Mech., Vol. 339, pp. 357-390 https://doi.org/10.1017/S0022112097005429