• 제목/요약/키워드: flame size

검색결과 312건 처리시간 0.03초

화점높이 변화에 따른 Pool Fire의 연소특성 (Combustion Characteristics of Pool Fire by Height of Fire Source)

  • 박형주;차종호
    • 한국산학기술학회논문지
    • /
    • 제11권11호
    • /
    • pp.4671-4676
    • /
    • 2010
  • 화점높이 변화에 따른 풀 화재의 연소특성을 알아보기 위하여 인화성액체인 메탄올과 노르말 헵탄을 $100mm{\times}100mm{\times}50mm$ 크기의 사각형 용기에 내에 넣고 연소실험을 하였다. 용기의 재질은 스테인레스를 사용하였다. 연소시간, 질량감소속도, 화염온도, 화염높이 및 외부에서 화염으로의 공기유입속도 등을 측정하였으며 연소시 화염의 거동은 비디오카메라를 이용하여 촬영하였다. 실험을 통해서 화점의 높이가 증가할수록 외부에서 화염으로 유입되는 차가운 공기의 유입량이 증가하여 풀 화재의 연소특성이 감소함을 확인 할 수 있었다.

고속분출화염이 연소에 미치는 영향에 관한 연구 (A study of turbulent jet flame effects on combustion)

  • 정경석;정인석;조경국
    • 오토저널
    • /
    • 제4권2호
    • /
    • pp.13-23
    • /
    • 1982
  • To understand the effects of turbulence on combustion, it was experimentally investigated in the combustion chamber with sub-chamber by using pressure record and high speed Schlieren motion picture. The results show that turbulence can increase the flame propagating rate and there exists a condition under which the total burning time becomes the minimum. And it was also found that there exist three kinds of flame propagating pattern and the total burning time can be reduced with the appropriate selection of sub-chamber size and orifice diameter.

  • PDF

전기장이 인가된 상태에서 폴리에틸렌으로 피복된 기울어진 전선을 통해 전파하는 화염에 대한 실험적 연구 (Experimental Study on Spreading Flame over Slanted Polyethylene Insulated Electrical Wire with AC Electric Field)

  • 임승재;김민국;박정;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.187-190
    • /
    • 2014
  • An experimental study on downwardly and upwardly spreading flames over slanted electrical wire, which is insulated by Polyethylene(PE), was conducted with applied AC electric field. The result showed that downwardly and upwardly spreading flames with angle of inclination leaned toward burnt side and unburned side, respectively. With applied AC electric fields, size of downwardly spreading flame decreased slightly and that of upwardly spreading flame increased significantly. Flame spread rate showed various trends in terms of inclination, applied voltage and frequency.

  • PDF

가시용 직분식 디젤기관의 분무와 화염에 관한 연구 (A study on the spray and flame by optically accessible D.I. diesel engine : analysis by Schlieren method and diffused background illumination method)

  • 안수길;이덕보;라진홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.9-23
    • /
    • 1995
  • To analyze the spray and flame in D.I. diesel engine, the visualizing methods by schlieren photograph and diffused background illumination photograph with high speed camera are applied to optically accessible D.I.diesel engine. Wcaporating spray, spray droplets and brightness flame are taken with high speed camera by visuallizing method in accordance with various suction air temperature and injection time. The spray and flame image on the film was analyzed by image analyzer. The optically accessible D.I. diesel engine had the similar pressure characteristic to the real D.I. diesel engine. Experimental results showed that shadow areas of the evaporating spray were extended at higher suction air temperature, spray droplets had a max. Penetration length and their penetrating patterns were dependent on the surrounding gas temperature, and flame size after ignition was largely governed by the evaporated fuel quantity at ignition point and by the surrounding gas condition due to piston motion.

  • PDF

예혼합 평면화염에서 비구형 실리카 입자의 성장에 관한 수치해석적 연구 (A Numerical Analysis of Growth of Non-spherical Silica Particles in a Premixed Flat Flame)

  • 오세백;이방원;최만수
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1351-1358
    • /
    • 2000
  • Two dimensional aerosol dynamics considering the effects of particle generation, coagulation, thermophoresis, sintering and convection has been studied to obtain the growth of non-spherical silica particles in conjunction with determining flame temperature by performing combustion analysis of premixed flat flame. Heat and mass transfer analysis includes 16 species, 29 chemical reaction steps together with oxidation and hydrolysis of SiCl4. The effect of radiation heat loss has also been included. The predictions of flame temperatures and the evolution of particle size distributions were in a reasonable agreement with the existing experimental data.

Correlations between In-flight Particles, Splats and Coating Microstructures of Ni20Cr Thermally Sprayed by Flame and Arc Spray Processes

  • Apichayakul, Pisit;Wirojanupatump, Sittichai;Jiansirisomboon, Sukanda
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.509-510
    • /
    • 2006
  • Correlations between in-flight particle, splat and coating microstructure of thermally sprayed Ni20Cr were investigated. Flame spray and arc spray systems were employed for spraying Ni20Cr powder and Ni20Cr wire, respectively. The results showed that the arc spray process produced a broader size distribution for both in-flight particles and splats compared to flame process. Flower-like splat morphology was obtained from the arc spray whereas a pancake-like splat was obtained by flame spray. Ni20Cr coating sprayed by arc process had a denser microstructure, lower porosity and better adhesion at the interface.

  • PDF

교류전기장이 인가된 전선을 통해 전파하는 화염에 있어서 기울어진 각도가 미치는 영향에 대한 실험적 연구 (Experimental Study on effect of inclination angle for Spreading Flame over Wire with AC Electric Fields)

  • 임승재;김민국;박정;권오붕;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.185-188
    • /
    • 2015
  • An experimental study on downwardly and upwardly spreading flames over slanted electrical wire, which is insulated by Polyethylene(PE), was conducted with applied AC electric field. The result showed that downwardly and upwardly spreading flames with angle of inclination leaned toward burnt side and unburned side, respectively. With applied AC electric fields, size of downwardly spreading flame decreased slightly and that of upwardly spreading flame increased significantly. Flame spread rate showed various trends in terms of inclination, applied voltage and frequency.

  • PDF

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

산업용 가스화 용융로를 위한 산소 버너의 개발 (Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace)

  • 배수호;이은도;신현동;김성현;구재회;유영돈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF