• Title/Summary/Keyword: flame reactor

Search Result 55, Processing Time 0.027 seconds

NOx Formation Characteristics on Heat Loss Rate for CH4/Air Premixed Flames in a Perfectly Stirred Reactor (완전혼합 반응기에서 CH4/Air 예혼합화염의 열손실율에 따른 Nox 생성특성)

  • Hwang, Cheol-Hong;Lee, Kee-Man;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1465-1472
    • /
    • 2009
  • The effect of heat loss rate on NOx formation of $CH_4/air$premixed flame were examined numerically in a perfectly stirred reactor. The following conclusions were drawn. Under the adiabatic wall condition, an increase in the residence time causes a remarkable increases in NOx emission. Under the heat loss conditions, however, NOx decreases significantly as the heat transfer coefficient and residence time increase. As the heat loss rate increases, Thermal NO mechanism and Re-burning NO mechanism play an important role in the NOx reduction, but Prompt NO mechanism and $N_2O$-intermediate NO mechanism lead to the increase in NOx production. Although the NOx formation is actually related to complex NOx mechanism with the changes in the heat transfer coefficient and residence time, it was found that NOx concentration can be represented by independent Thermal NO mechanism. From these results, new NOx correlation combined with the heat loss rate and residence time was suggested for predicting the NOx concentration in a practical $CH_4/air$premixed combustor.

Preparation of ultrafine aluminum oxide powders by using R.F. induced plasma (고주파 유도 플라즈마를 이용한 산화 알루미늄 초미세분말 제조)

  • Masahiro Kagawa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.269-277
    • /
    • 1995
  • Ultrafine TEX>$Al_2O_3$ powders were prepared from $AlCl_3$ and $Al_2(SO_4)_3$3 by using inductively coupled plasma (lCP) of ultrahigh temperature (above 5000 K) in heat source. The prepared $Al_2O_3$ powders had ${\alpha} - group ({\alpha}, {wdelta} ;and; {\theta})$ phase, a narrow size distribution and around 20 nm in meansize. It could be suggested that gas - solid reaction growth and interparticle sintering occured at the center of ICP tail flame (X = 500 mm) through the results of deposited aggregates - flock, whisker and platy on MgO polycrystal plate. And the formation mechanism of $Al_2O_3$ powders In spray - ICP reactor were described from upper results.

  • PDF

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

Analysis for Steady-State and Transient Combustion Characteristic of Solid Propellant Rocket Engine (고체 추진제 로켓엔진의 정상 및 비정상 연소특성 해석)

  • 김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.233-239
    • /
    • 2003
  • The present study has numerically investigated the combustion processes in the solid propellant rocket engine. The two step global reaction model for condensed phase and five step global reaction mechanism for gas phase are adopted to predict the detailed flame structure near double-base solid propellant surface. The turbulence-chemistry interaction is represented by the PaSR(Partially Stirred Reactor) model. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number k-$\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes and transient behavior of pressure and temperature fields in the solid propellant rocket engine.

  • PDF

Study of toluene decomposition using nonthermal plasma and catalyst (저온플라즈마와 촉매를 이용한 톨루엔 분해 연구)

  • Lim, Yun Hui;Lee, Ju-Yeol;Shin, Jae-Ran;Choi, Jin-Sik;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.541-548
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $C_7H_8$ using non-thermal plasma and metal-supported catalyst. Adsorption-desorption characteristics of toluene was performed using 4A type (Zeolite) filled in a concentration reactor. Through this test, it was found that the concentration reactor has 0.020 g/g of adsorption capacity (at ambient temperature and pressure) and 3,600 ppm of desorption property at $150^{\circ}C$ (with in 20 min). In case of developed catalyst, toluene decomposition rate of Pd-AO (Pd coated catalyst) was better than Pd/Cu-AO and Pd/Ag-AO (Pd/Ag composite metal catalyst). Developed non-thermal plasma system was obtained flame amplification effect using injection process of desorbed tolune, and 98% of removal efficiency.

WSR Study of Particle Size, Concentration, and Chemistry near Soot Inception (WSR 초기수트 조건에서의 입자 크기, 농도 및 화학적 특성)

  • Lee, Eui-Ju;Mulholland, George. W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1298-1303
    • /
    • 2004
  • The characteristics of soot near the soot inception point for an ethene-air flame was carried out in a WSR (well-stirred reactor). The new sampling tool like the temperature controlled filter system was introduced to minimize the condensation during sampling. The new analysis tools applied include the real time size distribution analysis with the Nano-DMA, particle size by transmission electron microscopy, C/H analysis, g filter analysis, and thermogravimetric analysis using both non-oxidative and oxidative pyrolysis. The WSR can generate young soot particles that can be collected and examined to gain insight into inception. For the current conditions, soot does not form for ${\Phi}=1.9$, inception occurs at or before ${\Phi}=2.0$, and inception combined with soot surface growth and/or coagulation occurs for ${\Phi=2.1}$. The filter samples for ${\Phi}$=1.9 are composed of volatile compounds that evolve at relatively low temperatures when heated in the presence or absence of $O_2$. The samples collected from the WSR at ${\Phi}=2.0$ and ${\Phi}=2.1$ are precursor-like in morphology and size. They have higher C/H ratios and lower organic percentages than precursor particles, but they are clearly not fully carbonized soot. The WSR PAH distribution is similar to that in young soot from inverse flames.

  • PDF

A Study on Validation Methodology of Fire Retardant Performance for Cables in Nuclear Power Plants (원자력발전소 케이블 난연성능 검증 방법론 개선을 위한 연구)

  • Lee, Sang Kyu;Moon, Young Seob;Yoo, Seong Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.140-144
    • /
    • 2017
  • Fire protection for nuclear power plants should be designed according to the concept of "Defense in Depth" to achieve the reactor safety shutdown. This concept focuses on fire prevention, fire suppression and safe shutdown. Fire prevention is the first line of "Defense in Depth" and the licensee should establish administrative measures to minimize the potential for fire to occur. Administrative measures should include procedures to control handling and use of combustibles. Electrical cables is the major contributor of fire loads in nuclear power plants, therefore electrical cables should be fire retardant. Electrical cables installed in nuclear power plants should pass the flame test in IEEE-383 standard in accordance with NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants". To assure the fire retardant of electrical cables during design life, both aged and unaged cable specimens should be tested in accordance with IEEE-383. It can be generally thought that the flammability of electrical cables has been increased by wearing as time passed, however the results from fire retardant tests performed in U.S.A and Korea indicate the inconsistent tendency of aging and consequential decrease in flammability. In this study, it is expected that the effective methodology for validation of fire retardant performance would be identified through the review of the results from fire retardant tests.

OVERVIEW ON HYDROGEN RISK RESEARCH AND DEVELOPMENT ACTIVITIES: METHODOLOGY AND OPEN ISSUES

  • BENTAIB, AHMED;MEYNET, NICOLAS;BLEYER, ALEXANDRE
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • During the course of a severe accident in a light water nuclear reactor, large amounts of hydrogen can be generated and released into the containment during reactor core degradation. Additional burnable gases [hydrogen ($H_2$) and carbon monoxide (CO)] may be released into the containment in the corium/concrete interaction. This could subsequently raise a combustion hazard. As the Fukushima accidents revealed, hydrogen combustion can cause high pressure spikes that could challenge the reactor buildings and lead to failure of the surrounding buildings. To prevent the gas explosion hazard, most mitigation strategies adopted by European countries are based on the implementation of passive autocatalytic recombiners (PARs). Studies of representative accident sequences indicate that, despite the installation of PARs, it is difficult to prevent at all times and locations, the formation of a combustible mixture that potentially leads to local flame acceleration. Complementary research and development (R&D) projects were recently launched to understand better the phenomena associated with the combustion hazard and to address the issues highlighted after the Fukushima Daiichi events such as explosion hazard in the venting system and the potential flammable mixture migration into spaces beyond the primary containment. The expected results will be used to improve the modeling tools and methodology for hydrogen risk assessment and severe accident management guidelines. The present paper aims to present the methodology adopted by Institut de Radioprotection et de $S{\hat{u}}ret{\acute{e}}$ $Nucl{\acute{e}}aire$ to assess hydrogen risk in nuclear power plants, in particular French nuclear power plants, the open issues, and the ongoing R&D programs related to hydrogen distribution, mitigation, and combustion.

Controlled synthesis of silica nanoparticles by a two-fluid nozzle flame reactor (이류체 노즐형 화염 반응기에 의한 실리카 나노분말 제조)

  • Chang, Han-Kwon;Jang, Hee-Dong;Chang, Won-Chul
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.308-313
    • /
    • 2005
  • 실리콘 잉고트의 절단공정에서 발생하는 폐실리콘 슬러지는 실리콘과 실리콘카바이드 등의 유가자원이 함유되어 있으며, 이 중 실리콘 분말은 실리콘 화합물인 알콕시실란 등을 제조하는데 원료로 사용이 가능하다. 본 연구에서는 폐실리콘 슬러지로부터 분리, 합성된 사에 톡시실란(TEOS)을 원료로 이용하여 실리카 나노분말을 합성하였다. TEOS 원료물질을 외부 혼합형 이류체 노즐을 이용하여 미세액적으로 분무하고 화염 속으로 도입시키고 화염열분해 반응을 진행시켜 실리카 나노분말을 합성하였다. 합성된 실리카 나노입자의 특성은 투과형 전자현미경 및 BET에 의하여 입자형상 및 평균 입자크기가 분석되었다. 주요 공정변수인 분산공기의 압력, 반응가스의 조성을 변화시켜 실험한 결과 평균크기가 $9{\sim}68nm$인 실리카 나노분말을 제조하였다.

  • PDF

Synthesis of titania nanopowder and its photocatalytic properties

  • Jang, Hee-Dong;Lee, Jae-Chun;Kil, Dae-Sup
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.569-572
    • /
    • 2003
  • Titanium dioxide ($TiO_2$) nanoparticles were prepared by the oxidation of titanium tetrachloride ($TiCl_4$) in a diffusion flame reactor. The average diameter of particles was 15 to 30 nm and mass fraction of anatase ranged from $40\;to\;80\%$. Effects of particle size and phase composition of those $TiO_2$ nanoparticles on photocatalytic properties such as decomposition of methylene blue and bacteria gas were investigated. The degree of decomposition of methylene blue by the $TiO_2$ nanoparticles under the illumination of the black light was directly proportional to the anantase mass fraction, but inversely to the particle size. The decomposition of bacteria by the $TiO_2$ nanoparticles under the illumination of the fluorescent light showed the same trend as in the case of the methylene blue.

  • PDF