• 제목/요약/키워드: flame luminosity

검색결과 20건 처리시간 0.026초

레이저 탄성산란법, 여기적열법, 자발광을 이용한 직분식 디젤엔진의 피스톤 형상에 따른 2차원 soot 분포 측정 (Measurments of 2-D Image Soot Distribution for Different Piston-Shapes of a DI Diesel Engine Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity)

  • 노승민;원영호;박정규;최인용;전광민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.183-193
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D images of soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage and that soot exists in the flame using luminosity, LIS and LII.

  • PDF

레이저 탄성산란법, 여기적열법, 자발광을 이용한 가시화 디젤엔진의 후기연소의 2차원 soot 분포 측정 (Measurments of 2-D Image Soot Distribution in Late Combustion Stage Using Elastic Scattering, Laser-Induced Incandescence and Flame Luminosity)

  • 노승민;원영호;박정규;최인용;전광민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.162-167
    • /
    • 2000
  • Soot formation and oxidation is closely related to the combustion phenomena inside a diesel engine. Laser-based diagnostics provide a means for improving our understanding of diesel combustion, because they have highly temporal and spatial ability. To understand the soot behavior we did preliminary study by taking flame luminosity photographs and 2-D imaging soot distribution using Laser Elastic Scattering(LIS) and Laser-Induced Incandescence(LII). From the data we found that soot concentration was high in the bowl and disappeared from the central region in the late combustion stage.

  • PDF

SiC 필라멘트를 이용한 소염 직전의 확산화염 온도 계측 (SiC filament Pyrometry in Near Extinction Diffusion Flame)

  • 심성훈;신현동
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1481-1487
    • /
    • 2002
  • The thin SiC filament technique has been employed to identify the possibility of measuring flame temperature, and especially unstable near-extinction flame temperature in an oxidizer deficient ambience, by comparing the relative visible (non-IR) luminosities of SiC filaments with thermocouple measured temperature in co-flowing, laminar propane/air diffusion flames. The results show good agreement between the digitized relative visible luminosity profiles of the SiC filaments and temperature profiles measured using a thermocouple at temperatures above $700^{\circ}C$, although, a non-linear calibration is probably required far the whole temperature range. The highest radial peak temperature exists near to the nozzle exit. and the centerline temperatures were virtually unchanged with increasing flame height in an oxidizer deficient near-extinction flame.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF

스파크 점화 엔진에서 초기화염 발달의 가시화 (Visualization of Initial Flame Development in an SI Engine)

  • 엄인용
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

가솔린엔진에서의 2차원 화염 가시화 (2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine)

  • 배충식
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

EFFECT OF FUEL STRATIFICATION ON INITIAL FLAME DEVELOPMENT: PART 1-WITHOUT SWIRL

  • Ohm, I.Y.;Park, C.J.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.519-526
    • /
    • 2006
  • For investigating the effect of fuel stratification on flame propagation, initial flame development and propagation were visualized under different axially stratified states in a port injection SI engine. Stratification was controlled by the combination of the port swirl ratio and injection timing. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Firstly in this paper, the characteristics under no port-generated swirl condition, i.e. normal conventional case was studied. Under various stratified conditions, flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flames propagation. The flame stability was estimated by the weighted average of flame area and luminosity. The stability was also evaluated through the standard deviation of flame area and propagation distance, and mean absolute deviation of propagating direction. Results show that stratification state according to injection timing do not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability is closely related to the engine stability and lean misfire limit.

유전체 방전을 이용한 확산화염에서의 매연저감 특성 (Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge)

  • 차민석;김관태;정석호;이상민
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF

Analysis of Diesel Combustion Flames with Highly Oxygenated Fuels

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.662-670
    • /
    • 2005
  • With highly oxygenated fuels the smoke emissions decreased sharply and linearly with increases in the fuel oxygen content and entirely disappeared at an oxygen content of $38wt-\%$ even at stoichiometric mixture conditions The NOx also decreased monotonically with increases in oxygen content. and thermal efficiency slightly improved because of a reduction in cooling loss and improvement in the degree of constant volume combustion. The mechanisms of the significant reductions in emissions and improvement in engine performance were analyzed with a bottom view type DI diesel engine. Together with direct flame images, flame images were taken through an optical fetter passing only two wavelengths for use in 2-D two-color analysis. The results showed that luminous flame decreased significantly with increases in oxygen content and was not detected for neat dimethoxy methane(DMM). The decrease in flame luminosity with highly oxygenated fuels corresponds with decreases in soot and cooling losses, including those due to heat radiation. The 2-D two-color flame analysis indicated that the high temperature flame and high KL factor areas apparently decreased with increasing fuel oxygen content. These results correspond strongly with decreases in NOx. smoke. and cooling loss with increases in oxygen content.

비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화 (Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process)

  • 이은도;이기호;오광철;신현동
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1557-1566
    • /
    • 2004
  • A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.