• Title/Summary/Keyword: flame length

Search Result 327, Processing Time 0.03 seconds

A Study on Response Characteristics of Jet-diffusion Flame and Premixed Flame with Various Velocity Perturbations (제트확산화염과 예혼합화염의 다양한 속도 섭동에 대한 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Kim, Heuydong;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of jet-diffusion flame and premixed flame. The experiment was conducted while varying the amplitude. Flame lengths were quantified for OH chemiluminescence measurement and compared with the result of the flame transfer function. Flame length and flame velocity perturbation were normalized and compared with the result of the flame transfer function. The comparison results appear that velocity perturbation and flame length oscillation of premixed flame show linear behaviors on the other hand jet-diffusion flame, amplitudes are more thant 0.20, shows nonlinear behaviors of flame velocity perturbation and flame length oscillation.

Understanding and Engineering Meaning of Meso-Scale Combustion Phenomena (메소-스케일 연소 현상의 공학적 의미와 이해)

  • Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.287-289
    • /
    • 2015
  • Meso-scale combustion is defined as combustion phenomena within limited characteristic length scales that are comparable with the laminar flame length scales. In the laminar flame theory, four representative length scales have been involved; i.e., a reaction layer thickness, a thermal layer thickness, a quenching distance, and a Markstein length. When the effects of these length scales on the flame characteristics are understood, the laminar flame theories can be clarified. Therefore, a study on the meso-scale combustion phenomena should not be thought as just a specific phenomena occurring in an exceptional combustion condition. Instead, all combustion phenomena within meso-scale spaces need to be explained by our knowledge. During this challenge, our understanding on laminar flame structures can be extended. Considering that most turbulent combustion phenomena in engineering application are still have local laminar flame structures, studies on laminar flame structures need to be re-visited especially in academic aspects.

  • PDF

Flame Length Characteristics of $CH_4/O_2$ on Jet Diffusion Flame (제트 확산화염에서 $CH_4/O_2$의 화염길이 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Kim, Han-Seok;Ahn, Kook-Young;Kim, Young-Mo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1328-1333
    • /
    • 2004
  • The Flame length of $CH_4$ with the Oxidizer of air and $O_2$ has been measured respectively for the nozzle diameter of 1.6mm, 2.7mm, 4.4mm and 7.7mm. In all $CH_4$ flame on oxidizer of air and $O_2$. the flame length was independent of the initial jet diameter, dependent only on the flowrate in laminar flame regime, and in turbulent flame dependent on the initial jet diameter. Using correlation equation of Delichatsios, the flame length has been expected exactly for $CH_4/air$ flame, but has been underestimated for $CH_4/O_2$ flame. This paper has proposed correlation equation of $CH_4/O_2$ flame.

  • PDF

The Flame Characteristics of Annular Combustor for Gas Turbine according to Combustor Length Ratio (가스터빈용 환형연소기의 연소실 길이비에 따른 화염특성)

  • Kim, Jaeyeong;Lee, Dongwon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.127-130
    • /
    • 2015
  • The objective of this study is to investigate the real flame shape and characteristic of annular combustor. To identify the effects of combustor length ratio and equivalence ratio on the flame shape in annular combustion configuration, the employed parameters are combustor length ratio 0.6-1.0, equivalence ratio 0.7-1.1. The flame shape is visualized using DSLR camera and precision optic mirror. The flame intensity is analyzed by $OH^{*}$ chemiluminescence images with ICCD camera. CO and NOx emission performance is also examined using an exhaust gas analyzer. From the visualized images, it is confirmed that the different tendency appeared in combustor length ratio 0.6-0.7 and 0.8-1.0. The results of $OH^{*}$ chemiluminescence show that the flame intensity is the most uniform for equivalence ratio 0.9. The smaller equivalence ratio is, the less emission of CO and NOx will be in this investigation range.

  • PDF

Flame Length Characteristic for Varying Nozzle Diameter to Develop Oxy-Fuel Combustor (순 산소 연소기 개발을 위한 노즐직경변화에 따른 화염길이 특성)

  • Kim Ho-Keun;Kim Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.861-867
    • /
    • 2005
  • In order to develop oxy-fuel combustor, the Flame length characteristic of $CH_4$ with oxidizer of air and oxygen has been experimentally investigated for tile nozzle diameters of 1.6mm, 2.7mm, 4.4mm and 7.7mm. The structure of $CH_4$ flame with oxidizer of oxygen was sharp in contrast with the $CH_4$ flame with oxidizer of air. The stability of $CH_4$ flame with oxidizer of oxygen was higher than $CH_4$ flame with oxidizer of air. In all $CH_4$ flames with oxidizer of air and oxygen, the flame length were dependent on the flowrate in laminar flame regime, and in turbulent flame dependent on the initial jet diameter. Using correlation equation of Delichatsios, the flame length has been expected exactly for $CH_4$ flame with oxidizer of air, but underestimated for $CH_4$ flame with oxidizer of oxygen. This paper proposed correlation equation of $CH_4$ flame with oxidizer of oxygen.

Flame Length and EINOx Scaling of Syngas $H_2$/CO Turbulent Non-premixed Jet Flames ($H_2$/CO 합성가스의 비예혼합 난류 제트화염에서 화염 길이와 EINOx 스케일링)

  • Hwang, Jeongjae;Sohn, Kitae;Bouvet, Nicolas;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.30-37
    • /
    • 2012
  • The flame lengths and NOx emission characteristics of syngas $H_2$/CO turbulent non-premixed jet flames were investigated. The flame length which is the main parameter governs NOx emission was studied for various syngas compositions. The flame length was compared with previous correlation between Froude number and flame height and it shows that they have good agreements. It was confirmed that the turbulent jet flames herein investigated are in the region of buoyancy-momentum transition. NOx emission was reduced with increased Reynolds number and CO contents in syngas fuel and with decreased fuel nozzle diameter which is attributed by decreased flame residence time. Previous EINOx scaling based on flame residence time of $L_f^3/(d_f^2U_f)$ satisfies only the jet flame in momentum-dominated region, not buoyancy-momentum transition region. The simplified flame residence time ($L_f/U_f$) was adopted in modified EINOx scaling. The modified scaling satisfies the jet flames not only in momentum-dominated region but in buoyancy-momentum transition region. The scaling is also satisfied with $H_2$/CO syngas jet flames.

Flame Length Scaling and Structure in Turbulent Hydrogen Non-Premixed Jet Flames with Coaxial Air (동축공기 수소 확산화염의 구조 및 화염길이 스케일링)

  • Yun, Sang-Wook;Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.105-110
    • /
    • 2006
  • Many previous works have been performed to provide correlations of flame length, theoretically and experimentally. Most of these results studied were conducted in vertical turbulent flame with no coaxial air condition. The present study analyzes the flame length scaling with coaxial air. In turbulent hydrogen non-premixed jet flames with coaxial air, flame length scaling theoretically proposed so far has been related with the concept of a far-field equivalent source. At high coaxial air to fuel velocity ratio, $U_A/U_F$, however, this scaling theory has some difference with experimental flame length data. This difference is understood to be due to the fact that the theory is based on far-field notion, while the effect of coaxial air on jet flame occurs in the region near the nozzle exit. Therefore, we define effective jet density $P_{eff}$ involving the concept of near-field so that effective jet diameter can be extended to the near-field region. In this condition, we modify the correlation and compare with experimental data.

  • PDF

CROSS FLOW EFFECTS ON THE FLAME HEIGHT OF AN INTERMEDIATE SCALE DIFFUSION FLAME

  • Kolb, Gilles;Torero, Jose L.;Most, Jean-Michel;Joulain, Pierre
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.169-177
    • /
    • 1997
  • An experimental study has been conducted at an intermediate scale to study the effect of a cross flow on a purely buoyant fire. Video taping of the flame and post processing of the images by means of a novel technique provide a contour of a mean flame for all cases studied. This flame contour allows the determination of a mean flame length and a mean flame height. The mean flame length and height are recorded as functions of the forced flow velocity. Three dimensional flow patterns are formed in the flame trailing edge affecting both the mean flame length and height. The three dimensional patterns are studied systematically as functions of the cross flow velocity to quantify the effect of confinement on the flame geometry.

  • PDF

Flame Stabilization and Control in Gas Turbine Combustor (가스터어빈 연소기의 화염 안정화와 제어)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • This paper presents the characteristics of lifted height and flame length from non-premixed jet flames in highly preheated air to investigate the detail combustion mechanism in the gas turbine or HCCI engine, etc. Special attention was paid to the effect of preheated air temperature, oxygen concentration and fuel injection flow rate on flame length and lifted hight. By using highly preheated air, stable flames were formed even in low oxygen concentration condition. The lifted height increased with decreasing preheated air temperature, where the flame length showed opposed phenomena. The flamelet model, which is thought to have very thin flamelet, is difficult to applicable to the present flame conditions which is formed In low oxygen concentration in highly preheated air.

  • PDF

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF