Flame Length and EINOx Scaling of Syngas $H_2$/CO Turbulent Non-premixed Jet Flames

$H_2$/CO 합성가스의 비예혼합 난류 제트화염에서 화염 길이와 EINOx 스케일링

  • 황정재 (서울대학교 기계항공공학부) ;
  • 손기태 (서울대학교 기계항공공학부) ;
  • ;
  • 윤영빈 (서울대학교 기계항공공학부)
  • Received : 2012.12.05
  • Accepted : 2012.12.11
  • Published : 2012.12.30

Abstract

The flame lengths and NOx emission characteristics of syngas $H_2$/CO turbulent non-premixed jet flames were investigated. The flame length which is the main parameter governs NOx emission was studied for various syngas compositions. The flame length was compared with previous correlation between Froude number and flame height and it shows that they have good agreements. It was confirmed that the turbulent jet flames herein investigated are in the region of buoyancy-momentum transition. NOx emission was reduced with increased Reynolds number and CO contents in syngas fuel and with decreased fuel nozzle diameter which is attributed by decreased flame residence time. Previous EINOx scaling based on flame residence time of $L_f^3/(d_f^2U_f)$ satisfies only the jet flame in momentum-dominated region, not buoyancy-momentum transition region. The simplified flame residence time ($L_f/U_f$) was adopted in modified EINOx scaling. The modified scaling satisfies the jet flames not only in momentum-dominated region but in buoyancy-momentum transition region. The scaling is also satisfied with $H_2$/CO syngas jet flames.

Keywords

References

  1. R. M. Jones, N. Z. Shilling, IGCC gas turbines for refinery applications, Schenectady, NY: GE Power Systems, 2003.
  2. A. K. Das, K. Kumar, C. -J. Sung, Laminar flame speeds of moist syngas mixtures, Combust. Flame, Vol. 158(2), 2011, pp. 345-353. https://doi.org/10.1016/j.combustflame.2010.09.004
  3. N. Bouvet, C. Chauveau, I. Gokalp, F. Halter, Experimental studies of the fundamental flame speeds of syngas ($H_2$/CO)/air mixtures, Proc. Combust. Inst., Vol. 33(1), 2011, pp. 913-920. https://doi.org/10.1016/j.proci.2010.05.088
  4. F. L. Dryer, M. Chaos, Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications, Combust. Flame, Vol. 152(1-2), 2008, pp. 293-299. https://doi.org/10.1016/j.combustflame.2007.08.005
  5. S. M. Walton, X. He, B. T. Zigler, M. S. Wooldridge, An experimental investigation of the ignition properties of hydrogen and carbon monoxide mixtures for syngas turbine applications, Proc. Combust. Inst., Vol. 31(2), 2007, pp. 3147-3154. https://doi.org/10.1016/j.proci.2006.08.059
  6. M. Chaos, F. L. Dryer, Syngas combustion kinetics and applications, Combust. Sci. Technol., Vol. 180(6), 2008, pp. 1053-1096. https://doi.org/10.1080/00102200801963011
  7. P. Saxena, F. A. Williams, Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide, Combust. Flame, Vol. 145(1-2), 2006, pp. 316-323. https://doi.org/10.1016/j.combustflame.2005.10.004
  8. J. Lee, S. Park, Y. Kim, Effects of fuel-side nitrogen dilution on structure and NOx formation of turbulent syngas non-premixed jet flames, Energy Fuels, Vol. 26, 2012, pp. 3304-3315. https://doi.org/10.1021/ef3003087
  9. D. E. Giles, S. Som, S. K. Aggarwal, NOx emission characteristics of counterflow syngas diffusion flames with airstream dilution, Fuel, Vol. 85, 2006, pp. 1729-1742. https://doi.org/10.1016/j.fuel.2006.01.027
  10. N. Peters, S. Donnerhack, Structure and similarity of nitric oxide production in turbulent diffusion flames, Proc. Combust. Inst., Vol. 18, 1981, pp. 33-42. https://doi.org/10.1016/S0082-0784(81)80008-2
  11. S. Som, A. I. Ramirez, J. Hagerdorn, A. Saveliev, S.K. Aggarwal, A numerical and experimental study of counterflow syngas flames at different pressures, Fuel, Vol. 87, 2008, pp. 319-334. https://doi.org/10.1016/j.fuel.2007.05.023
  12. G. A. Lavoie, A. F. Schlader, A scaling study of NO formation in turbulent diffusion flames of hydrogen burning in air, Combust. Sci. Technol., Vol. 8, 1973, pp. 215-224. https://doi.org/10.1080/00102207308946645
  13. R. -H. Chen, J. F. Driscoll, Nitric oxide levels of jet diffusion flames: Effects of coaxial air and other mixing parameters, Proc. Combust. Inst., Vol. 23, 1990, pp. 281-288.
  14. R. Gabriel, J. E. Navedo, R. -H. Chen, Effects of fuel Lewis number on nitric oxide emission of diluted $H_2$ turbulent jet diffusion flames, Combust. Flame, Vol. 121, 2000, pp. 525-534. https://doi.org/10.1016/S0010-2180(99)00159-5
  15. J. F. Driscoll, R. -H. Chen, Y. Yoon, Nitric oxide levels of turbulent jet diffusion flames: Effects of residence time and damkohler number, Combust. Flame., Vol. 88(1), 1992, 37-49. https://doi.org/10.1016/0010-2180(92)90005-A
  16. M. A. Delichatsios, "Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships", Combust. Flame., Vol. 92, 1993, pp. 349-64. https://doi.org/10.1016/0010-2180(93)90148-V
  17. G. T. Kalghatgi, Personal communication-Flame height raw data, The 9th International Colloquium on Gas Dynamics of Explosion and Reactive Systems, 1983, Poiters, France.