• Title/Summary/Keyword: flame angle

Search Result 148, Processing Time 0.024 seconds

A Study on the Combustion Characteristics of Spark Plug with Pre-ignition Chamber (예연소실을 갖는 점화플러그의 연소 특성에 관한 연구)

  • Jie, Myoung-Seok;Kim, Jin-Hyuck;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.718-723
    • /
    • 2007
  • The new concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber in the lower end of spark plug and flame hole, in which fresh mixture gas can be introduced without any fuel supply system. This spark plug was tested with a commercial SI engine. Fuel consumption rate, emission gas and MBT timing were measured in the engine dynamometer for various flame hole numbers, hole positions, hole sizes of the pre-ignition chamber of the spark plug. And average flame propagation speed was measured by using the head gasket ionization probe in single cylinder engine. The new concept spark plug induces fast bum in combustion compared with the conventional spark plug, and MBT(Minimum advance for Best Torque) timing was retarded about $3{\sim}5^{\circ}$ crank angle. The flame hole number, hole direction and volume of pre-ignition chamber were found to influence the combustion characteristics.

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.3
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

An Experimental Study of Smoke Movement of the Various Fire Location in Room (실내공간에서 화재 발생위치에 따른 연기거동에 대한 실험연구)

  • Yu, Hong-Seon;Jeong, Jin-Yong;Lee, Jae-Ha;Hong, Gi-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.703-709
    • /
    • 2002
  • In order to investigate the smoke movement in three dimensional room fires, the center fire, wall fire and corner fire plume in different sized fires were studied experimentally by rectangular pool fire using methanol as a fuel. As the fire size became larger for the center fires placed at the center of the floor, the air flow rate entrained through the opening, average hot layer temperature, flame angle deflected backwards and mean flame height was observed to increase. On the other hand, as the fire size became smaller, the neutral plane height in the door and time reached steady-state was observed to decrease. The average hot layer temperature, mean flame height and doorway neutral plane height obtained from comer fire were higher than those produced by wall fires and center fires. The simple model for describing the effect of walls on the mean flame height was presented. It was shown that the model provides a good description of the present measurements, when used with the assumption by Hansell(1993), that the increase of the average flame height is equal to the ratio of the open to the total perimeters of the trays. Also the two models for predicting the effects of walls on the mean flame height were presented. These models overestimated the measured values of the mean flame height above fuel trays close to a wall and in a corner by approximately 19-26%, respectively.

Effect of Positive Pressure Ventilator Tilting Angle on the Flame Suppression and Smoke Density (Positive Pressure Ventilator 경사각 변화에 의한 화염억제 효율과 연기농도 변화)

  • Kim, Sung-Won;Lee, Kyoung-Duck;Shin, Chang-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.135-142
    • /
    • 2006
  • The experiment applied Positive Pressure Ventilation to rapidly exhaust heat and smoke inside the construction in the fire was done. Changes of heat discharge and smoke density were measured, with the various blowing condition like a fan tilting angle to find the effect of the parameter. Experimental apparatus were with PPV and water mist system for better efficiency, and investigate the effect of heat discharge and smoke removal. In the experiment, flame temperature has decreased when PPV was applied. Smoke density, generated from fire also decreased dramatically and the efficiency showed the highest rate at $0^{\circ}$ tilting angle. In addition, combination of PPV and water mist system highly improved the efficiency of evacuation on heat and smoke density, clearly was influenced by the tilting angle.

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.

An Experimental Investigation of the Characteristic of Radical ($OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$) and Pollutant Emission in Partially Premixed Swirling Methane-air Flames. (스월을 강화한 메탄/공기 부분 예혼합화염에서 자발광($OH^{\ast}$, $CH^{\ast}$, 그리고 $C_2^{\ast}$) 배출특성과 배기배출물에 관한 실험적 연구)

  • Ahn, Kyuong-Min;Jeong, Yong-Ki;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.320-327
    • /
    • 2005
  • An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from $1.36{\sim}{\infty}$, and swirlers with swirl numbers of 0, 0.28, 0.64, and 1.32, on the characteristic of radical ($OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$) and pollutant emission in partially premixed swirling flames. The signal from the electronically excited state of $OH^{\ast}$, $CH^{\ast}$, and $C_2^{\ast}$ was detected through a band pass filter with a photo multiplier tube, and flow fields images were detected through a schlieren system. The results demonstrated that the flame height decreases and jet spreading angle increase with increasing a swirl number. The more momentum ratio and swirl number increase, the more decrease flame height, and the generation of sooting flame is promoted.

  • PDF

Effect of Atmospheric Pressure Flame Plasma Treatment on Surface and Adhesive Bonding Properties between Steel Plate and Rubber (대기압 화염 플라즈마 처리가 강판의 표면 및 고무와의 접착특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • To increase the adhesive strength of acrylonitrile butadiene rubber(NBR) and steel plate, the atmospheric pressure flame plasma(APFP) treatment device is applied. The effect of various conditions(processing velocity and distance) is experimentally investigated to ascertain the optimum conditions to yield the best adhesive properties. It is found that the optimum distance between burner port and steel plate is 40mm and the optimum processing velocity is 50m/min at given condition. When the surface is coated twice with the bonding agent, the adhesion strength of APFP treated steel plate is increased to about 20.5%. It suggests that the surface modification of steel by flame plasma treatment at atmospheric pressure is a proper and applicable method to improve the adhesion strength between steel and rubber.

SIMULATION OF KNOCK WITH DIFFERENT PISTON SHAPES IN A HEAVY-DUTY LPG ENGINE

  • CHOI H.;LIM J.;MIN K.;LEE D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • In this study, a three-dimensional transient simulation with a knock model was performed to predict knock occurrence and autoignition site in a heavy-duty LPG engine. A FAE (Flame Area Evolutoin) premixed combustion model was applied to simulate flame propagation. The coefficient of the reduced kinetic model was adjusted to LPG fuel and used to simulate autoignition in the unburned gas region. Engine experiments using a single-cylinder research engine were performed to calibrate the reduced kinetic model and to verify the results of the modeling. A pressure transducer and a head-gasket type ion-probe circuit board were installed in order to detect knock occurrences, flame arrival angles, and autoignition sites. Knock occurrence and position were compared for different piston bowl shapes. The simulation concurred with engine experimental data regarding the cylinder pressure, flame arrival angle, knock occurrence, and autoignition site. Furthermore, it provided much information about in-cylinder phenomena and solutions that might help reducing the knocking tendency. The knock simulation model presented in this paper can be used for a development tool of engine design.