• Title/Summary/Keyword: fixed coefficient method

Search Result 177, Processing Time 0.031 seconds

Implementation and the Energy Efficiency of the Kinetic Shading System (가동형 차양 시스템의 구성과 에너지 효율)

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.67-73
    • /
    • 2014
  • This study aims at examining kinetic efficient shading systems and their implementation methods. These days, the importance of the shading devices are getting more significant due to the energy problem. Cordially, suitable shade designs are required as an important element for the exterior envelope of the building. This study employs the optimal shading design as an efficient shading method with the kinetic system that can be converted actively by the altitude of the sun. The proposed kinetic shading system works not only as a lightshelf in case the altitude of the sun is high but also as a vertical louver when the sun is getting lower in order to block the direct sunlight. This study has analyzed the thermal performance and shading coefficient of the kinetic shading system in comparison to existing fixed shading devices using the Ecotect. The results, in sum, conclude that the suggested kinetic shading system could decrease direct sunlights 26.2% more than the existing shading methods.

Study of Equivalent Retention among Different Polymer-Solvent Systems is Thermal Field-Flow Fractionation

  • 김원숙;박영훈;문명희;유유경;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.868-874
    • /
    • 1998
  • An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ratio of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted AT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value.

Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method (미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석)

  • Shin, Young-Jae;Park, Sung-Hyun;Kim, Jin-Hong;Yoo, Yeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.93-101
    • /
    • 2016
  • In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.

Application of Electrochemical Method for Decolorization of Biologically Treated Animal Wastewater Effluent (생물학적 축산폐수 처리수 색도제거를 위한 전기화학적 방법의 적용)

  • 윤성준;신종서;라창식
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.315-324
    • /
    • 2006
  • This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

A Study on Video Encoder Implementation having Pipe-line Structure (Pipe-line 구조를 갖는 Video Encoder 구현에 관한 연구)

  • 이인섭;이완범;김환용
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1183-1190
    • /
    • 2001
  • In this paper, it used a different pipeline method from conventional method which is encoding the video signal of analog with digital. It designed with pipeline structure of 4 phases as the pixel clock ratio of the whole operation of the encoder, and secured the stable operational timing of the each sub-blocks, it was visible the effect which reduces a gate possibility as designing by the ROM table or the shift and adder method which is not used a multiplication flag method of case existing of multiplication of the fixed coefficient. The designed encoder shared with the each sub-block and it designed the FPGA using MAX+PLUS2 with VHDL.

  • PDF

A Study on Video Encoder Design having Pipe-line Structure (파이프라인 구조를 갖는 비디오 부호화기 설계에 관한 연구)

  • 이인섭;이선근;박규대;박형근;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.169-172
    • /
    • 2001
  • In this paper, it used a different pipeline method from conventional method which is encoding the video signal of analog with digital. It designed with pipeline structure of 4 phases as the pixel clock ratio of the whole operation of the encoder, and secured the stable operational timing of the each sub-blocks, it was visible the effect which reduces a gate possibility as designing by the ROM table or the shift and adder method which is not used a multiplication flag method of case existing of multiplication of the fixed coefficient. The designed encoder shared with the each sub-block and it designed the FPGA using MAX+PLUS2 with VHDL.

  • PDF

A Study on Dynamic Characteristics Analysis of Hybrid Wind Power Blades according to Material Properties Method (물성치 적용 기법에 따른 하이브리드 풍력 블레이드 동적특성 해석에 관한 연구)

  • Kang, Byong-Yun;Han, Jeong-Young;Hong, Cheol-Hyun;Moon, Byong-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the heat transfer coefficient measurement techniques using TSP(temperature sensitive paint) were introduced and the results of a comparative study on the heat transfer coefficient measurement by steady state and transient TSP techniques were discussed. The distributions of heat transfer coefficient by a single $60^{\circ}$ inclined impingement jet on a flat surface were measured by both techniques. Tested Reynolds number based on the jet diameter (d) was 30,000 and the distance between jet exit and target plate (L) was fixed at 10d. Results showed that the measured Nusselt number by both techniques indicated significant difference except near the center of impingement jet. Also, the heat transfer coefficients measured by the transient TSP technique were affected by the reference temperature of the jet. Based on the measured data, characteristics of both TSP techniques were analyzed and suggestions for applying them were also given.