• Title/Summary/Keyword: fixed base building

Search Result 58, Processing Time 0.022 seconds

Dynamic response of a lined tunnel with transmitting boundaries

  • Fattah, Mohammed Y.;Hamoo, Mohammed J.;Dawood, Shatha H.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.275-304
    • /
    • 2015
  • The objective of this paper is to investigate the validity of transmitting boundaries in dynamic analysis of soil-structure interaction problems. As a case study, the proposed Baghdad metro line is considered. The information about the dimensions and the material properties of the concrete tunnel and surrounding soil were obtained from a previous study. A parametric study is carried out to investigate the effect of several parameters including the peak value of the horizontal component of earthquake displacement records and the frequency of the dynamic load. The computer program (Mod-MIXDYN) is used for the analysis. The numerical results are analyzed for three conditions; finite boundaries (traditional boundaries), infinite boundaries modelled by infinite elements (5-node mapped infinite element) presented by Selvadurai and Karpurapu, 1988), and infinite boundaries modelled by dashpot elements (viscous boundaries). It was found that the transmitting boundary absorbs most of the incident energy. The distinct reflections observed for the "fixed boundaries" disappear by using "transmitted boundaries". This is true for both cases of using viscous boundaries or mapped infinite elements. The type and location of the dynamic load represent two controlling factors in deciding the importance of using infinite boundaries. It was found that the results present significant differences when earthquake is applied as a base motion or a pressure load is applied at the surface ground. The peak value of the vertical displacement at nodes A, B, E and F (located at the tunnel's crown and side walls, and at the surface above the tunnel and at the surface 6.5 m away from tunnel's centre respectively) increases with the frequency of the surface pressure load for both cases 1 and 2 (traditional boundaries and mapped infinite elements respectively) while it decreases for case 3 (viscous boundaries). The modular ratio Ec/Es (modulus of elasticity of the concrete lining to that of the surrounding soil) has a considerable effect on the peak value of the horizontal displacement at node B (on the side wall of the tunnel lining) increase about (17.5) times, for the three cases (1, 2, and 3).

Indoor Location Tracking System using 2.4GHz Wireless Channel Model (2.4GHz 채널을 이용한 실내 위치 인식 시스템)

  • Jung, Kyung-Kwon;Choi, Jung-Yeon;Chung, Sung-Boo;Park, Jin-Woo;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.846-849
    • /
    • 2008
  • In recent years there has been growing interest in wireless sensor networks (WSNs) for a variety of indoor applications. In this paper, we present the RSSI-based localization in indoor environments. In order to evaluate the relationship between distance and RSSI, the log-normal path loss shadowing model is used. By tagging users with a sensor node and deploying a number of nodes at fixed position in the building, the RSSI can be used to determine the position of tagged user. This system operates by recording and processing signal strength information at the base stations. It combines Euclidean distance technique with signal strength matrix obtained during real-time measurement to determine the location of user. The experimental results presented the ability of this system to estimate user's location with a accuracy.

  • PDF

Test on the anchoring components of steel shear keys in precast shear walls

  • Shen, Shao-Dong;Pan, Peng;Li, Wen-Feng;Miao, Qi-Song;Gong, Run-Hua
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Prefabricated reinforced-concrete shear walls are used extensively in building structures because they are convenient to construct and environmentally sustainable. To make large walls easier to transport, they are divided into smaller segments and then assembled at the construction site using a variety of connection methods. The present paper proposes a precast shear wall assembled using steel shear keys, wherein the shear keys are fixed on the embedded steel plates of adjacent wall segments by combined plug and fillet welding. The anchoring strength of shear keys is known to affect the mechanical properties of the wall segments. Loading tests were therefore performed to observe the behavior of precast shear wall specimens with different anchoring components for shear keys. The specimen with insufficient strength of anchoring components was found to have reduced stiffness and lateral resistance. Conversely, an extremely high anchoring strength led to a short-column effect at the base of the wall segments and low deformation ability. Finally, for practical engineering purposes, a design approach involving the safety coefficient of anchoring components for steel shear keys is suggested.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Optimum location of second outrigger in RC core walls subjected to NF earthquakes

  • Beiraghi, Hamid;Hedayati, Mansooreh
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.671-690
    • /
    • 2021
  • Seismic responses of RC core wall with two outriggers are investigated in this study. In the models analyzed here, one of the outriggers is fixed at the top of the building and the second is placed at different levels along the height of the system. Each of the systems resulting from the placement of the outrigger at different locations is designed according to the prescriptive codes. The location of the outrigger changes along the height. Linear design of all the structures is accomplished by using prescriptive codes. Buckling restrained braces (BRBs) are used in the outriggers and forward directivity near fault and far fault earthquake record sets are used at maximum considered earthquake (MCE) level. Results from nonlinear time history analysis demonstrate that BRB outriggers can change the seismic responses like force distribution and deformation demand of the RC core-walls over the height and lead to the new plastic hinge arrangement over the core-wall height. Plasticity extension in the RC core wall occurs at the base as well as adjacent to the outrigger levels. Considering the maximum inter-story drift ratio (IDR) demand as an engineering parameter, the best location for the second outrigger is at 0.75H, in which the maximum IDR at the region upper the second outrigger level is approximately equal to the corresponding value in the lower region.

A Study on Seismic Protection Equipment for Fire Pipes Installed on Buildings (건축물에 설치되는 소방용 배관의 내진장치에 관한 연구)

  • Lim, Geon-Tae;Lim, Sang-Ho
    • Industry Promotion Research
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study is a technology related to a seismic protection device for a fire pipe for installation in a building such as an apartment or a building. The fire pipe is fixed to the base panel by fastening bolts so as to flow left and right. The present invention relates to an earthquake-resistant apparatus for a fire-extinguishing piping, which is capable of minimizing damages caused by an earthquake in order to prevent damages and breakage of a fire-extinguishing pipe by mitigating earthquakes, vibrations, It is connected to an insert plate embedded in concrete or ceiling hanger bolts formed at regular intervals on the ceiling to keep the piping constant from the ceiling and to keep the horizontal condition of the piping always constant so that the piping relaxes or sags And to effectively prevent damage to the piping. The can get.

Crashworthiness Study of Sliding Post Using Full Scale Crash Test Data (충돌실험 데이터를 이용한 슬라이딩 지주구조의 감충성능 분석)

  • Jang, Dae-Young;Lee, Sung-Soo;Kim, Kee-Dong;Sung, Jung-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Medium to large post structures installed along the roadside without proper protection can lead to serious vehicle damage and occupant injury at the impact. In North America and Europe, splitting systems such as slip base or breakaway device are used to reduce impacts. But the system has the risk of secondary accident when the splitted post falls down to the traffic or pedestrian. Sliding Post have been proposed as a way to solve this problem. By studying the crash test results of the 1.3ton and 0.9ton vehicle with 60 km/h and 80 km/h to a Rigidly Fixed Post (RFP) and Sliding Post (SP), danger of the conventional RFP and crashworthiness of the SP have been proven. While collision analysis only from the acceleration measured at the center of the vehicle assumes the motion of the post is the same as that of the vehicle, in this paper, by adding high speed film data to the analysis with vehicle acceleration could have separate the post motion from the vehicle motion. It gives better explanations on the movement of post and vehicle in each distinctive time step and provides basics to the crashworthy post design.

Analysis of Cost Structures of National R&D Programs for Effective National R&D Management (국가연구개발 정률예외사업의 원가구조분석을 통한 합리적인 사업관리방안)

  • Cho, Seong-Pyo;Ha, Seok-Tae;Hwang, Myung-Ku
    • Journal of Technology Innovation
    • /
    • v.25 no.2
    • /
    • pp.153-179
    • /
    • 2017
  • Korean government has granted fixed indirect cost rates to several exceptional R&D programs which is lower than the predetermined rate by the government. It has been needed to evaluate the validity of exceptional R&D programs and determine the optimal indirect costs rate of the programs. This study analyzes the cost structure and explores drivers of indirect costs of exceptional R&D programs and evaluates the validity of current indirect costs rates. Finally, we propose the formulas for indirect costs rates of exceptional R&D programs. We analyze the cost structure of the exceptional R&D programs. Equipments and material costs are 50% in infra building program. Scholarship to students is 43% in HRD program. Equipments and material costs are 50% and R&D activity costs are 31% in international R&D program. Main cost components of evaluation program are salary(37%), R&D execution costs(21%) and R&D activity costs(19%). We propose three formulas of indirect costs for exceptional programs. 1) The cost items with exceptionally large amount are excluded in the base of formula for indirect costs. 2) Fixed indirect cost rate is applied for specific R&D programs. 3) Upper bound is set for the cost items with exceptionally large amount in the calculation of indirect costs rate. Our proposal is expected to contribute to the improvement of the efficiency of national R&D programs.