• Title/Summary/Keyword: fixed base building

Search Result 60, Processing Time 0.02 seconds

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Pounding-involved response of isolated and non-isolated buildings under earthquake excitation

  • Mahmoud, Sayed;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.231-252
    • /
    • 2010
  • Previous research on pounding between seismically isolated buildings during earthquakes has been focused on impacts at the bases of structures and the effect of simultaneous interactions at the bases and at the superstructures has not been studied in details. In this paper, the seismic responses of adjacent buildings supported on different or similar base systems considering impacts between bases and superstructures are numerically investigated. The study is carried out in three parts for the two types of adjacent buildings: (i) both structures have fixed bases; (ii) one structure has fixed base and the other is seismically isolated and (iii) both structures have base isolation systems. The results of the study indicate that the pounding-involved responses of the buildings depend mainly on the type of structural base systems and on the structural parameters of both buildings. For the base-isolated building, the variation of the peak accelerations and displacements of the storeys have been found to be relatively low. On the other hand, significant differences have been observed for the fixed base building. The results of the parametric study conducted for different values of the gap size between colliding structures show the reduction in the peak base displacements as the gap distance decreases.

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions

  • Atefatdoost, Gholam Reza;JavidSharifi, Behtash;Shakib, Hamzeh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.637-648
    • /
    • 2018
  • When the centers of mass and stiffness of a building do not coincide, the structure experiences torsional responses. Such systems can consist of the underlying soil and the super-structure. The underlying soil may modify the earthquake input motion and change structural responses. Specific effects of the input motion shall also not be ignored. In this study, seismic demands of asymmetric buildings considering soil-structure interaction (SSI) under near-fault ground motions are evaluated. The building is modeled as an idealized single-story structure. The soil beneath the building is modeled by non-linear finite elements in the two states of loose and dense sands both compared with the fixed-base state. The infinite boundary conditions are modelled using viscous boundary elements. The effects of traditional and yield displacement-based (YDB) approaches of strength and stiffness distributions are considered on seismic demands. In the YDB approach, the stiffness considered in seismic design depends on the strength. The results show that the decrease in the base shear considering soft soil induced SSI when the YDB approach is assumed results only in the center of rigidity to control torsional responses. However, for fixed-base structures and those on dense soils both centers of strength and rigidity are controlling.

New approach in design of seismic isolated buildings applying clusters of rubber bearings in isolation systems

  • Melkumyan, Mikayel G.
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.587-606
    • /
    • 2013
  • The given paper presents a new approach in design of seismic isolation systems of base isolated buildings. The idea is to install not one big size rubber bearing under the columns and/or shear walls, or one by one with certain spacing under the load-bearing walls, but to install a group/cluster of small size bearings, in order to increase the overall effectiveness of the isolation system. The advantages of this approach are listed and illustrated by the examples. Also the results of analyses of some buildings where the approach on installation of clusters of rubber bearings was used in their isolation systems are given for two cases: i) when the analyses are carried out based on the provisions of the Armenian Seismic Code, and ii) when the time history analyses are carried out. Obtained results are compared and discussed. Paper also presents, as an example, detailed analysis and design of the 18-story unique building in one of the residential complexes in Yerevan. Earthquake response analyses of this building were carried out in two versions, i.e. when the building is base isolated and when it is fixed base. Several time histories were used in the analyses. Comparison of the obtained results indicates the high effectiveness of the proposed structural concepts of isolation systems and the need for further improvement of the Seismic Code provisions regarding the values of the reduction factors. A separate section in the paper dedicated to the design of high damping laminated rubber-steel bearings and to results of their tests.

Vertical Distribution of Seismic Load for Earthquake Resistnat Design of base Isolated Building Structures (면진건축물의 내진설계를 위한 지진하중 분배식 제안)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.212-219
    • /
    • 1999
  • In this paper we investigated an applicability of earthquake regulations for seismic-isolated building structures which has been used currently and propose an efficient method for vertical distribution of seismic loads. The distribution of force is revised in UBC-94 as vertical distribution of force of UBC(Uniform Building Code)-91 is not sufficient safety but its distribution is inefficient expensive because of similar expression to fixed-based structures. In order to overcome this difficulties improved vertical distribution to fixed-based structures. In order to overcome this difficulties improved vertical distribution of seismic load is proposed using two degrees-of-freedom isolated structures and mode shape of fixed-based structures. Efficiency and accuracy of the proposed method are verified through analysis of an example structures with moment resisting frame and shear walls so this study approximate to dynamic analysis results in each case.

  • PDF

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.