• Title/Summary/Keyword: fitting test

Search Result 598, Processing Time 0.027 seconds

Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents

  • Xia, Pengguo;Guo, Hongbo;Zhao, Hongguang;Jiao, Jie;Deyholos, Michael K.;Yan, Xijun;Liu, Yan;Liang, Zongsuo
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.38-46
    • /
    • 2016
  • Background: Blind and excessive application of fertilizers was found during the cultivation of Panax notoginseng in fields, as well as increase in root rot disease incidence. Methods: Both "3414" application and orthogonal test designs were performed at Shilin county, Yunnan province, China, for NPK (nitrogen, phosphorus, and potassium) and mineral fertilizers, respectively. The data were used to construct the one-, two-, and three-factor quadratic regression models. The effect of fertilizer deficiency on root yield loss was also analyzed to confirm the result predicted by these models. A pot culture experiment was performed to observe the incidence rate of root rot disease and to obtain the best range in which the highest yield of root and saponins could be realized. Results: The best application strategy for NPK fertilizer was $0kg/667m^2$, $17.01kg/667m^2$, and $56.87kg/667m^2$, respectively, which can produce the highest root yield of 1,861.90 g (dried root of 100 plants). For mineral fertilizers, calcium and magnesium fertilizers had a significant and positive effect on root yield and the content of four active saponins, respectively. The severity of root rot disease increased with the increase in soil moisture. The best range of soil moisture varied from 0.56 FC (field capacity of water) to 0.59 FC, when the highest yield of root and saponins could be realized as well as the lower incidence rate of root disease. Conclusion: These results indicate that the amount of nitrogen fertilizer used in these fields is excessive and that of potassium fertilizer is deficient. Higher soil moisture is an important factor that increases the severity of the root rot disease.

Development of the HEMP Generation, Propagation Analysis, and Optimal Shelter Design Tool (고 고도 전자기파(HEMP) 발생과 전파해석 및 방호실 최적 설계 Tool 개발)

  • Kim, Dong Il;Min, Gyeong Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2331-2338
    • /
    • 2014
  • The HEMP threat may have acquired new, and urgent, relevance as the proliferation of nuclear weapons and missile technology accelerates of the North Korea, for example, is assessed as already having developed few atomic weapons, and is on the verge of North Korea already has missiles capable of delivering a nuclear warhead against South Korea. ITU K.78, K81 and IEC recommended its counter-measuring for the industrial facilities with navigation and sailing facilities in order to obviate the all of processor equipped system malfunctions from the EMP/HEMP but its simulation must only be done by the computer simulation which had studied on the 1960-1990 years USA/AFWL papers. This result has a significant activities to the South Korea being under the North Korea threat because all of HEMP related products was strongly limited for export. The HEMP cord which was developed newly by the KTI including the HEMP generation & propagation analysis, optimal shelter design tool, essential EM energy attenuation in multi-layered various soils and rocks and HEMP filter design tool. Especially, the least square fitting method was adopted to analysis for the EM energy attenuation in the soils and rocks because it has a various characteristics based on the many times field test reports.

Experimental investigation on valve rattle noise of automotive electronic-wastegate turbochargers (차량용 전자식 웨이스트 게이트 터보차져의 밸브 떨림음에 대한 실험적 고찰)

  • Park, Hoil;Eom, Sangbong;Kim, Youngkang;Hwang, Junyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.686-686
    • /
    • 2013
  • Automotive turbochargers have become common in gasoline engines as well as diesel engines. They are excellent devices to effectively increase fuel efficiency and power of the engines, but they unfortunately cause several noise problems. The noises are classified into mechanical noises induced from movement of a rotating shaft and aerodynamic noises by air flow in turbochargers. In addition to, there is a mechanical noise caused from movement of an actuator, electronically controlling a wastegate valve. It is called as valve rattle noise. The actuator is connected to a valve through a linkage. The noise occurs only if the valve is open, where the linkage is freely contact to neighbor structures without being constrained by any external forces. This condition allows impacts by the pulsation of exhaust gas, and the vibration from the impacts spreads out through turbine housing, causing the rattle noise. The noise is not in mechanical operating wastegate turbochargers because the linkage of an actuator is strongly connected by actuating force. For the electronic wastegate turbocharger, this paper proposed a test device to show the noise generating mechanism with a small vibration motor having an unbalanced shaft. It also shows how to reduce the noise - reduction of linkage clearances, inserting wave washers into a connection, and applying loose fitting in bushing embracing a valve lever to turbine housing.

  • PDF

Real-time Hand Region Detection based on Cascade using Depth Information (깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출)

  • Joo, Sung Il;Weon, Sun Hee;Choi, Hyung Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.713-722
    • /
    • 2013
  • This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.

TLS (Total Least-Squares) within Gauss-Helmert Model: 3D Planar Fitting and Helmert Transformation of Geodetic Reference Frames (가우스-헬머트 모델 전최소제곱: 평면방정식과 측지좌표계 변환)

  • Bae, Tae-Suk;Hong, Chang-Ki;Lim, Soo-Hyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2022
  • The conventional LESS (LEast-Squares Solution) is calculated under the assumption that there is no errors in independent variables. However, the coordinates of a point, either from traditional ground surveying such as slant distances, horizontal and/or vertical angles, or GNSS (Global Navigation Satellite System) positioning, cannot be determined independently (and the components are correlated each other). Therefore, the TLS (Total Least Squares) adjustment should be applied for all applications related to the coordinates. Many approaches were suggested in order to solve this problem, resulting in equivalent solutions except some restrictions. In this study, we calculated the normal vector of the 3D plane determined by the trace of the VLBI targets based on TLS within GHM (Gauss-Helmert Model). Another numerical test was conducted for the estimation of the Helmert transformation parameters. Since the errors in the horizontal components are very small compared to the radius of the circle, the final estimates are almost identical. However, the estimated variance components are significantly reduced as well as show a different characteristic depending on the target location. The Helmert transformation parameters are estimated more precisely compared to the conventional LESS case. Furthermore, the residuals can be predicted on both reference frames with much smaller magnitude (in absolute sense).

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (II) - Application and Analysis - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(II) - 적용 및 분석 -)

  • Jung, In Kyun;Shin, Hyung Jin;Park, Jin Hyeog;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.709-721
    • /
    • 2008
  • This paper is to test the applicability of ModKIMSTORM (Modified KIneMatic Wave STOrm Runoff Model) by applying it to Namgangdam watershed of $2,293km^2$. Model inputs (DEM, land use, soil related information) were prepared in 500 m spatial resolution. Using five typhoon events (Saomi in 2000, Rusa in 2002, Maemi in 2003, Megi in 2004 and Ewiniar in 2006) and two storm events (May of 2003 and July of 2004), the model was calibrated and verified by comparing the simulated streamflow with the observed one at the outlet of the watershed. The Pearson's coefficient of determination $R^2$, Nash and Sutcliffe model efficiency E, the deviation of runoff volumes $D_v$, relative error of the peak runoff rate $EQ_p$, and absolute error of the time to peak runoff $ET_p$ showed the average value of 0.984, 0.981, 3.63%, 0.003, and 0.48 hr for 4 storms calibration and 0.937, 0.895, 8.08%, 0.138, and 0.73 hr for 3 storms verification respectively. Among the model parameters, the stream Manning's roughness coefficient was the most sensitive for peak runoff and the initial soil moisture content was highly sensitive for runoff volume fitting. We could look into the behavior of hyrologic components from the spatial results during the storm periods and get some clue for the watershed management by storms.

Analysis of Solute Transport based on Electrical Resistance Measurements from Laboratory Column Tests (전기저항센서가 부착된 주상실험기에서 측정된 전기저항값을 이용한 용질의 이동해석)

  • Kim, Yong-Sung;Kim, Jae-Jin;Park, Junboum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.231-238
    • /
    • 2008
  • A column testing device capable of measuring the electrical resistivity of soil at 3 different locations was developed to verify applicability of bulk electrical conductivity (BEC) breakthrough curves in monitoring contaminant transport. Tracer injection tests were conducted with three different types of saturated sands to obtain average linear velocities and longitudinal hydrodynamic dispersion coefficients based on BEC breakthrough curves and effluent solute breakthrough curves. Comparative analysis of transport parameters obtained from curve fitting the results into the analytical solutions confirmed the validity of resistance measurements in estimating time-continuous resident solute concentration. Under the assumption that a linear relationship exists between ${\sigma}_{sat}-{\sigma}_w-C$, the BEC breakthrough curves are able to effectively reduce the laborious and time-consuming processes involved in the conventional method of sampling and analysis. In order to reduce possible uncertainties in analyzing the BEC breakthrough curves, it was recommended that resistance measurements take place nearby the effluent boundary. In addition, a sufficient electrical contrast or difference in the electrical conductivity of the influent and the saturating solution is required to conduct reliable analysis.

Use of custom glenoid components for reverse total shoulder arthroplasty

  • Punyawat Apiwatanakul;Prashant Meshram;Andrew B. Harris;Joel Bervell;Piotr Lukasiewicz;Ridge Maxson;Matthew J. Best;Edward G. McFarland
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2023
  • Background: Our purpose was to evaluate a custom reverse total shoulder arthroplasty glenoid baseplate for severe glenoid deficiency, emphasizing the challenges with this approach, including short-term clinical and radiographic outcomes and complications. Methods: This was a single-institution, retrospective series of 29 patients between January 2017 and December 2022 for whom a custom glenoid component was created for extensive glenoid bone loss. Patients were evaluated preoperatively and at intervals for up to 5 years. All received preoperative physical examinations, plain radiographs, and computed tomography (CT). Intra- and postoperative complications are reported. Results: Of 29 patients, delays resulted in only undergoing surgery, and in three of those, the implant did not match the glenoid. For those three, the time from CT scan to implantation averaged 7.6 months (range, 6.1-10.7 months), compared with 5.5 months (range, 2-8.6 months) for those whose implants fit. In patients with at least 2-year follow-up (n=9), no failures occurred. Significant improvements were observed in all patient-reported outcome measures in those nine patients (American Shoulder and Elbow Score, P<0.01; Simple Shoulder Test, P=0.02; Single Assessment Numeric Evaluation, P<0.01; Western Ontario Osteoarthritis of the Shoulder Index, P<0.01). Range of motion improved for forward flexion and abduction (P=0.03 for both) and internal rotation up the back (P=0.02). Pain and satisfaction also improved (P<0.01 for both). Conclusions: Prolonged time (>6 months) from CT scan to device implantation resulted in bone loss that rendered the implants unusable. Satisfactory short-term radiographic and clinical follow-up can be achieved with a well-fitting device. Level of evidence: III.