DOI QR코드

DOI QR Code

Analysis of Solute Transport based on Electrical Resistance Measurements from Laboratory Column Tests

전기저항센서가 부착된 주상실험기에서 측정된 전기저항값을 이용한 용질의 이동해석

  • 김용성 (서울대학교 건설환경공학부) ;
  • 김재진 (서울대학교 건설환경공학부) ;
  • 박준범 (서울대학교 건설환경공학부)
  • Received : 2008.03.25
  • Accepted : 2008.06.04
  • Published : 2008.07.31

Abstract

A column testing device capable of measuring the electrical resistivity of soil at 3 different locations was developed to verify applicability of bulk electrical conductivity (BEC) breakthrough curves in monitoring contaminant transport. Tracer injection tests were conducted with three different types of saturated sands to obtain average linear velocities and longitudinal hydrodynamic dispersion coefficients based on BEC breakthrough curves and effluent solute breakthrough curves. Comparative analysis of transport parameters obtained from curve fitting the results into the analytical solutions confirmed the validity of resistance measurements in estimating time-continuous resident solute concentration. Under the assumption that a linear relationship exists between ${\sigma}_{sat}-{\sigma}_w-C$, the BEC breakthrough curves are able to effectively reduce the laborious and time-consuming processes involved in the conventional method of sampling and analysis. In order to reduce possible uncertainties in analyzing the BEC breakthrough curves, it was recommended that resistance measurements take place nearby the effluent boundary. In addition, a sufficient electrical contrast or difference in the electrical conductivity of the influent and the saturating solution is required to conduct reliable analysis.

본 연구에서는 오염용질의 이동특성을 분석하기 위한 측정방법으로서 전기저항센서를 부착한 주상실험기를 개발하였으며 3가지의 포화사질토에 비반응성 추적자를 주입하여 그 적용성을 평가하였다. 측정된 전기저항 값을 바탕으로 전기전도도 파과곡선을 얻었으며, 추정된 농도자료를 이류-확산 방정식에 대입하여 수리분산계수를 산정하였다. 유출수 파과곡선에서 추정된 평균간극유속과 종분산계수를 바탕으로 전기전도도 파과곡선의 신뢰성을 평가해본 결과 전제된 ${\sigma}_{sat}-{\sigma}_w-C$(흙의 전기전도도-간극수의 전기전도도-간극수 내 용질의 농도) 사이의 선형 조건이 성립할 시 측정된 전기저항치는 흙 매질내 간극수 용질의 상대농도를 간접적으로 추정할 수 있는 인자임을 확인하였다. 전기전도도 파과곡선은 실제농도(resident concentration)의 시간적 변화를 나타낼 수 있는 만큼 시간연속적인 전기저항 측정은 많은 시간과 노력이 요구되는 용출수 샘플링과 분석을 효과적으로 대체할 수 있을 것으로 판단되었다. 불확실성을 줄이기 위해 저항측정위치와 주입되는 용액과 포화간극수와의 전기적 차이가 고려되어야함을 확인하였다.

Keywords

References

  1. 유동주, 오명학, 김용성, 박준범(2006) 벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석. 한국지반공학회논문집, 한국지반공학회, Vol. 22, No. 10, pp. 21-32
  2. Aggelopoulos C.A. and Tsakiroglou C.D. (2007) The longitudinal dispersion coefficient of soils as related to the variability of local permeability. Water Air Soil Pollution, Vol. 185, pp. 223-237 https://doi.org/10.1007/s11270-007-9445-6
  3. Archie G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME, Vol. 146, pp. 54-62 https://doi.org/10.2118/942054-G
  4. Campanella, R.G. and Weemees, I. (1990) Development and use of an electrical resistivity cone for groundwater contamination studies. Canadian Geotechnical Journal, Vol. 27, pp. 557-567 https://doi.org/10.1139/t90-071
  5. Folkes, D.J. (1982) Fifth Canadian Geotechnical Colloquium: Control of contaminant migration by the use of liners. Canadian Geotechnical Journal, Vol. 19, pp. 320-344 https://doi.org/10.1139/t82-038
  6. Freeze, R.A. and Cherry, J.A. (1979) Groundwater. Prentice Hall Inc.
  7. Keller, G.V. and Frischknecht, F.C. (1966) Electrical Methods in Geophysical Prospecting. Pergamon Press
  8. Klein, K. (1999) Electromagnetic properties of high specific surface minerals. Ph.D. Thesis, Department of Civil Engineering, Georgia Institute of Technology, USA
  9. Kumar, P.R. and Singh, D.N. (2005) A novel technique for monitoring contaminant transport through soils. Environmental Monitoring and Assessment, Vol. 109, pp. 147-160 https://doi.org/10.1007/s10661-005-5845-5
  10. Kreft, A. and Zuber, A. (1978) On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, Vol. 33, pp. 1471-1480 https://doi.org/10.1016/0009-2509(78)85196-3
  11. Mackay, D.M., Roberts, P.V., and Cherry, J.A. (1985) Transport of organic contaminants in groundwater. Environmental Science and Technology, Vol. 19, No. 5, pp. 384-392 https://doi.org/10.1021/es00135a001
  12. Maraqa, M.A. (2001) Effects of fundamental differences between batch and miscible displacement techniques on sorption distribution coefficient. Environmental Geology, Vol. 41, pp. 219-228 https://doi.org/10.1007/s002540100386
  13. Persson, M., Berndtsson, R., Nasri, S., Albergel, J., Zante, P., and Yumegaki, Y. (2000) Solute transport and water content measurements in clay soils using time domain reflectory. Hydrological Sciences Journal, Vol. 45, No. 6, pp. 833-847 https://doi.org/10.1080/02626660009492387
  14. Pinder, G.F. (1984) Groundwater contaminant transport modeling. Environmental Science and Technology, Vol. 18, No. 4, pp. 108A-114A https://doi.org/10.1021/es00122a602
  15. Reiger, P.H. (1987) Electrochemistry. Prentice Hall Inc.
  16. Rowe, R.K. (1988) Eleventh Canadian Geotechnical Colloquium: Contaminant migration through groundwater - the role of modeling in the design of barriers. Canadian Geotechnical Journal, Vol. 25, pp. 778-798 https://doi.org/10.1139/t88-087
  17. Rowe, R.K. and Booker, J.R. (1985) 1-D pollutant migration in soils of finite depth. Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 4, pp. 479-499 https://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(479)
  18. Santamarina, J.C. (2001) Soils and Waves, John Wiley & Sons
  19. Shackelford, C.D. (1994) Critical concepts for column testing. Journal of Geotechnical Engineering, Vol. 120, No. 10, pp. 1804-1828 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:10(1804)
  20. Shackelford, C.D., Malusis, M.A., Majeski, M.J., and Stern, R.T. (1999) Electrical Conductivity Breakthrough Curves. Journal of Geotechnical and Geoenvironmental Engineering, ASCE. Vol. 125, No. 4, pp. 260-270 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(260)
  21. Shackelford, C.D. and Redmond, P.L. (1995) Solute breakthrough curves for processed kaolin at low flow rates. Journal of Geotechnical Engineering, Vol. 121, No. 1, pp. 17-31 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:1(17)
  22. Singh, K.S. (2006) Estimating dispersivity and injected mass from breakthrough curve due to instantaneous source. Journal of Hydrology, Vol. 329, pp. 685-691 https://doi.org/10.1016/j.jhydrol.2006.03.017
  23. Toride, N., Leij, F.J., and van Genuchten, M. Th. (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Research Report No. 137, US Salinity Laboratory, USDA, CA
  24. Yang, H., Rahardjo, H., Wibawa, B., and Leong, E. (2004) A soil column apparatus for labroatory infiltration study. Geotechnical Testing Journal, Vol. 27, No. 4, pp. 1-9
  25. van Genuchten, M. Th. and Parker, J.C. (1984) Boundary conditions for displacement experiments through short laboratory soil columns. Soil Sci. Soc. Am. J., Vol. 48, pp. 703-708 https://doi.org/10.2136/sssaj1984.03615995004800040002x
  26. van Genuchten, M. Th. and Wierenga, P.J. (1986) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monographs