• 제목/요약/키워드: fitting test

검색결과 596건 처리시간 0.024초

A MULTIPHASE LEVEL SET FRAMEWORK FOR IMAGE SEGMENTATION USING GLOBAL AND LOCAL IMAGE FITTING ENERGY

  • TERBISH, DULTUYA;ADIYA, ENKHBOLOR;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권2호
    • /
    • pp.63-73
    • /
    • 2017
  • Segmenting the image into multiple regions is at the core of image processing. Many segmentation formulations of an images with multiple regions have been suggested over the years. We consider segmentation algorithm based on the multi-phase level set method in this work. Proposed method gives the best result upon other methods found in the references. Moreover it can segment images with intensity inhomogeneity and have multiple junction. We extend our method (GLIF) in [T. Dultuya, and M. Kang, Segmentation with shape prior using global and local image fitting energy, J.KSIAM Vol.18, No.3, 225-244, 2014.] using a multiphase level set formulation to segment images with multiple regions and junction. We test our method on different images and compare the method to other existing methods.

역4차식 곡선근사에 의한 판재 성형한계변형률의 결정 (Determination of the Forming Limit Strain of Sheet Metal Using Inverse Quartic Curve Fitting)

  • 이주섭;김진동;김형종
    • 소성∙가공
    • /
    • 제22권6호
    • /
    • pp.328-333
    • /
    • 2013
  • The current study aims to determine the limit strains more accurately and reasonably when producing a forming limit curve (FLC) from experiments. The international standard ISO 12004-2 in its recent version (2008) states that the limit major strain should be determined by using the best-fit inverse second-order parabola through the experimental strain distribution. However, in cases where fracture does not occur at the center of the specimen, due to insufficient lubrication, the inverse parabola does not give a realistic fit because of its intrinsic symmetry in shape. In this study it is demonstrated that an inverse quartic function can give a much better fit than an inverse parabola in almost all FLC test samples showing asymmetric strain distributions. Using a quartic fit creates more reliable FLCs.

퍼미언스 방법을 이용한 스위치드 릴럭턴스 전동기의 인덕턴스 산정 (Inductance Calculation in a Switched Reluctance Motor using Permeance Method)

  • 이치우
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1836-1842
    • /
    • 2012
  • Torque is proportional to the rate of change of inductance in a switched reluctance motor (SRM), and hence, phase inductance is an important parameter in determining the behavior of an SRM. Therefore, the accurate prediction of inductance with respect to rotor position makes a significant contribution to designing an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance is predicted by means of a permeance method, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance obtained by FEA.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • 제9권4호
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

고강도 구조용강의 저온 충격특성 평가 (Evaluation of Impact Characteristics for High Strength Structural Steel at Low Temperature)

  • 김재훈;김덕회;김후식;조성석;전병완;심인옥
    • 한국추진공학회지
    • /
    • 제5권3호
    • /
    • pp.1-9
    • /
    • 2001
  • 잠수함용 재료로 개발된 고강도 구조용강의 충격 시험이 수행되었다. 특히 샤르피 충격시험기를 이용하여 저온에서 구조용 강의 충격특성을 평가하였다. 최소흡수에너지, 최대흡수에너지, 연성 취성 천이온도를 결정하기 위하여 hyperbolic tangent curve fitting법을 이용하였다. 시험결과로부터 샤르피 충격에너지와 횡팽창량 사이의 비례 관계식을 산출하였다. 시험온도 변화에 따른 파단면 특성을 평가하기 위하여 SEM을 이용하여 파단면을 관찰하였다.

  • PDF

CT 포화 복원 알고리즘 (A Current Compensation Algorithm for a CT Saturation)

  • 이효려;강상희;이동규;강용철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.88-90
    • /
    • 2003
  • In this paper, an algorithm to compensate the distorted signals due to CT(Current Transformer) saturation is suggested. Firstly, WT(Wavelet Transform) is used to detect a start point and an end point of saturation. Filter banks which can be easily realized in real-time applications are employed in detecting CT saturation. Secondly, least-square curve fitting method is used to restore the distorted section of the secondary current. Fault simulations are performed on a power system model using EMTP(Electromagnetic Transient Program). A series of test results indicate that WT has superior detection accuracy and the proposed algorithm which shows very stable features under various levels of remanent flux is also satisfactory.

  • PDF

스위치드 릴럭턴스 전동기의 회전자 정렬과 비정렬 위치에서의 인덕턴스 예측 (Analytical Estimation of Inductance at Aligned and Unaligned Rotor Positions in a Switched Reluctance Motor)

  • 이치우
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.34-40
    • /
    • 2012
  • Flux linkage of phase windings or phase inductance is an important parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of inductance at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance at aligned and unaligned rotor positions is estimated by means of numerical method and magnetic equivalent circuit as well, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance computed by an FEA simulation.

Flux Linkage Estimation in a Switched Reluctance Motor Using a Simple Reluctance Circuit

  • Lee, Cheewoo
    • Journal of Magnetics
    • /
    • 제18권1호
    • /
    • pp.57-64
    • /
    • 2013
  • Flux linkage of phase windings is a key parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of flux linkage at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear saturation in flux. Although several different approaches using a finite element analysis (FEA) or a curve-fitting tool have been employed to compute phase flux linkage [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase flux linkage at aligned and unaligned rotor positions is estimated by means of a reluctance network, and the proposed approach is analytically verified in terms of accuracy compared to FEA.

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Development of Hyperelastic Model for Butadiene Rubber Using a Neural Network

  • Pham, Truong Thang;Woo, Changsu;Choi, Sanghyun;Min, Juwon;Kim, Beomkeun
    • Elastomers and Composites
    • /
    • 제56권2호
    • /
    • pp.79-84
    • /
    • 2021
  • A strain energy density function is used to characterize the hyperelasticity of rubber-like materials. Conventional models, such as the Neo-Hookean, Mooney-Rivlin, and Ogden models, are widely used in automotive industries, in which the strain potential is derived from strain invariants or principal stretch ratios. A fitting procedure for experimental data is required to determine material constants for each model. However, due to the complexities of the mathematical expression, these models can only produce an accurate curve fitting in a specified strain range of the material. In this study, a hyperelastic model for Neodymium Butadiene rubber is developed by using the Artificial Neural Network. Comparing the analytical results to those obtained by conventional models revealed that the proposed model shows better agreement for both uniaxial and equibiaxial test data of the rubber.