• Title/Summary/Keyword: fish size

Search Result 934, Processing Time 0.041 seconds

Effect of Size Grading on Growth, Feed Efficiency and Survival in Olive Flounder (Paralichthys olivaceus) (동일연령군에서 크기 선별에 따른 넙치(Paralichthys olivaceus) 성장, 사료효율 및 생존율의 비교)

  • Kim, Jong-Hyun;Kim, Hyun-Chul;Lee, Jeong-Ho;Noh, Jae-Koo;Lee, Mi-Sug;Kim, Kyung-Kil
    • Journal of Aquaculture
    • /
    • v.18 no.3
    • /
    • pp.154-159
    • /
    • 2005
  • This study was conducted to evaluate the effects of size grading on growth, feed efficiency and survival of juvenile olive flounder. Juvenile flounder were divided into four groups by initial average size; Small group $(1.3{\pm}0.23g)$, medium group $(3.1{\pm}0.45g)$, large group $(4.9{\pm}0.57g)$ and ungraded group $(3.3{\pm}1.66g)$. Triplicate groups of 100 fish were reared over 8 weeks. In final body weight distribution, frequency of the small size flounder (10 g) was markedly higher in the ungraded group than in the small group. Specific growth rate, feed efficiency and survival in the ungraded group were significantly lower (P<0.05) than those in the pooled data of the othor three graded groups, although feed intake in the ungraded group was significantly higher (P<0.05) than that of the pooled data of the other three graded groups. These results show that the small flounder gained significantly faster growth and higher survival in the absence of the large flounder. Therefore, size grading seems to be an important and necessary operation to improve the growth and survival of juvenile olive flounder (1-5 g).

Effects of Photoperiod, Temperature, and Fish Size on Oxygen Consumption in the Black Porgy Acanthopagrus schlegeli

  • Chang Young Jin;Jeong Min Hwan;Min Byung Hwa;Neill William H.;Fontaine Lance P.
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.142-150
    • /
    • 2005
  • The effects of photoperiod, temperature, and fish size on oxygen consumption (OC) in the black porgy Acanthopagrus schlegeli, a euryhaline marine teleost, were studied using a closed recirculating seawater system with a respiratory chamber. Fish reared in indoor recirculating seawater tanks were divided into two groups: small (15.7-55.8 g, mean 38.1$\pm$15.9 g) and large (108.7-238.8 g, mean 181.8$\pm$54.9 g) fish. The OC of the fish showed a clear diel rhythm, with higher values in the daytime and lower values at night, in accordance with light (09:00-20:59 h) and dark (21:00-08:59 h) cycles. The OC of the fish increased linearly with the water temperature. The OC was the highest at 10:00 h, one hour after the onset of daylight and was the lowest at 03:00 h, six hours after dusk. The average OC at $20^{\circ}C$ during the light period was as high as 219.8 mg $O_2$/kg/h in the small fish and 156.3 mg $O_2$/kg/h in the large fish, while during the dark period it was as low as 130.5 and 110.4 mg $O_2$/kg/h, respectively. The OC during the dark period, which showed limited variation, could be regarded as the resting OC, and was 107.6, 130.5, and 219.8 mg $O_2$/kg/h at 15, 20, and $25^{\circ}C$, respectively, in small fish, and 52.3, 110.4, and 171.0 mg $O_2$/kg/h in large fish. As the body weight of black porgy increased, the OC decreased exponentially and the relationship was expressed as OC=1,222.8$BW^{-0.567}$, OC=1,113.2$BW^{-0.448}$, and OC=1,495.3$BW^{-0.468}$ at 15, 20, and $25^{\circ}C$, respectively. At a fish density of 14.5 g/L at $20^{\circ}C$, black porgy had the highest OC per breath compared to fish at the same density at 15 or $25^{\circ}C$. This suggests that the black porgy responds to the stocking density (15 kg/$m^3$) and water temperature ($20^{\circ}C$) conditions commonly observed in intensive aquaculture with the deepest breath and the highest metabolic activity.

Simulation of the virtual mackerel behavior to the trawl gear (트롤 어구에 대한 가상 고등어의 반응 행동 시뮬레이션)

  • Lee, Gun-Ho;Lee, Chun-Woo;Kim, Young-Bong;He, Pingguo;Choe, Moo-Youl
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • This paper focuses on the mackerel's visual ability and swimming capability, and aims to describe the behavior in capture and escape process by trawl. The visual sensory systems and reaction behavior based locomotory capability were analyzed and simulated. The ability of fish to see an object depends on the light intensity and the contrast and size of the object. Swimming endurance of the fish is dependent on the swimming speed and the size of the fish. Swimming speeds of the fish are simulated 3 types of the burst speed, the prolonged speed and the sustained speed according to the time they can maintain to swim. The herding and avoiding is typical reaction of the fish to the stimuli of trawl gear in the capture process. These basic behavior patterns of the virtual mackerel to the gear are simulated. This simulation will be helpful to understand the fishing processes and make high selectivity of fishing.

Optimum Size of a Reef Set in the Southern Water of Korea (한국 남해안의 1개 단위인공어초의 적정 규모)

  • Kim, Chang-Gil;Kim, Ho-Sang;Seo, Jang-Woo;Jung, Geum-Chul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.193-194
    • /
    • 2006
  • This study describes the optimum size of a reef set in Korean coastal waters. Data were analyzed in relation to the weight and variety of fish species caught with a three-layer gill net. The results did not indicate a significant difference in the mean catch and mean number of fish species among the three different reef sets, 800, 1,600 and 2400 $m^3$.

  • PDF

An Exploratory Study on Determining Optimal Fishing Effort and Production Levels of Danish Seine Fishery under the Sandfish Stock Rebuilding Plan (도루묵 수산자원회복계획 하에서 동해구기선저인망어업의 최적 어획노력량과 어획량 수준 결정에 관한 탐색적 연구)

  • Choi, Jong-Yeol;Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.43 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Based on Clark and Munro's theory of dynamic optimization between fishery resources and production, this study is aimed to take an empirical analysis of optimal production level to the Danish Seine fishery under the sandfish stock rebuilding plan. For empirical analysis, it examined the optimal fish stock size, production and fishing effort levels and it also made an additional evaluation of optimal production changes on main variables by sensitivity analyses. When a 4% of the discount rate is assumed, the optimal sandfish production of Danish Seine fishery would be 3,049 t, and the sandfish optimal stock size is evaluated to be 19,016 t. In addition, the optimal fishing effort is estimated to be 4,368 days. Accordingly, to achieve the optimal production level, current fishing efforts should be reduced while the fish stock size should be increased up to the optimal level.

Schooling Behavior and Estimation of the Fish School in Set Net by Fish Finder (어군탐지기에 의한 정치망내의 어군의 행동과 어군량 추정)

  • 신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 1986
  • Schooling behavier to a fishing gear and estimation of the volume of fish school in set net have ~ been studied by making use of such techniques as visual observations, underwater cameras, under- water televison. However, all of these observation techniques are subject to restrictions caused by illumination, underwater visibility, underwater transparent and sea conditions. For the above mentioned reasoa, one of the most effective method by this time become generally known a method using fish finder. In this paper, in order to control the fishing ground of set net effectively and to develope the telemetric fish finder, the experiments for the target strength, underwater shape of fishing gear, schooling behavier and volume of fish school with fish finder were performed at Galgott fishing ground of set net located Keouje Island, 15th-24th July and 18th-20th October in 1985. The results of these experiment showed that a method using fish finder in fishing grOlllld of set net is available for estimating distribution and school size, fish behavier in relation to a fishing gear and underwater shape of fishing gears.

  • PDF

Optimizing selection of sexually mature Barbus altianalis for induced spawning: determination of size at sexual maturity of populations from Lake Edward and Upper Victoria Nile in Uganda

  • Aruho, Cassius;Ddungu, Richard;Nkalubo, Winnie;Ondhoro, Constantine Chobet;Bugenyi, Fredrick;Rutaisire, Justus
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.11
    • /
    • pp.34.1-34.13
    • /
    • 2018
  • Sexual maturity ($L_{50}$), the length at which 50% of fish in a size class are mature, is a key aspect of domestication of new fish species because it guides the procedure for identification of appropriate broodstock size for artificial spawning. In this study, the $L_{50}$ was determined for 1083 Barbus altianalis samples obtained from Lake Edward and the Upper Victoria Nile. Gonads of freshly killed samples were examined macroscopically and verified with standard histological procedures for the maturation stages that were used to determine $L_{50}$. Oocytes and spermatogenic cell sizes were compared for fish obtained from both water bodies. Results indicated that there were no variations in macro gonad features observed for fish from Lake Edward and Upper Victoria Nile. Similarly, there were no significant differences in oocyte sizes (P > 0.05) between the two populations but significant differences in spermatogenic cell sizes were noted (P < 0.05) except for spermatozoa (P > 0.05). This however did not suggest peculiar differences between the two populations for staging the gonads. Consequently, no staging variations were suggested for both populations in determination of $L_{50}$. Sexual maturity was found in the same class size of fork length (FL) 20-24.9 cm and 35-39.9 cm for males and females from both water bodies, respectively. At this FL, however, males were too small, and for good selection of vigor broodstocks for spawning and conservation purposes, they are better picked from class size of 30-34.9 cm FL and above. These findings were crucial for integration of appropriate breeding size in spawning protocol by farmers and fisheries scientists conserving wild B. altianalis populations.

Comparative study of Satisfaction level on Hospital meal size and Actual intake rate between Elderly and Middle aged patients (노인환자와 중년환자의 병원음식 배식량에 대한 만족도와 섭취율 비교연구)

  • Son, Ju-Hyoun;Chyun, Jong-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.17 no.5
    • /
    • pp.619-628
    • /
    • 2002
  • The purpose of the study was to compare the satisfaction level on hospital meal size and actual intake rate of hospital foods between elderly and middle aged patients. Sixty one middle aged and one hundered thirty two elderly patients were surveyed on the foods served in the hospital-rice, soup, meat/fish, vegetable, kimchi and daily products. Compared to the middle aged patients, the more elderly thought the serving size of rice was too big(p<0.05), and those of soup, meat/fish and kimchi tended to be too big. There was no difference in the satisfaction level on the serving size of vegetable dish between two age groups. In actual intake rates of hospital meal there were no significant differences between the elderly and middle aged patients. However, the elderly male ate significantly(p<0.05) less amount of rice than the middle aged male and the elderly female ate significantly(p<0.01) less amount of meat/fish then the middle aged female. Satisfaction levels and actual intake rates were significantly correlated in all food items.

A study on Development Process of Fish Aquaculture in Japan - Case by Seabream Aquaculture - (일본 어류 양식업의 발전과정과 산지교체에 관한 연구 : 참돔양식업을 사례로)

  • 송정헌
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.2
    • /
    • pp.75-90
    • /
    • 2003
  • When we think of fundamental problems of the aquaculture industry, there are several strict conditions, and consequently the aquaculture industry is forced to change. Fish aquaculture has a structural supply surplus in production, aggravation of fishing grounds, stagnant low price due to recent recession, and drastic change of distribution circumstances. It is requested for us to initiate discussion on such issue as “how fish aquaculture establishes its status in the coastal fishery\ulcorner, will fish aquaculture grow in the future\ulcorner, and if so “how it will be restructured\ulcorner” The above issues can be observed in the mariculture of yellow tail, sea scallop and eel. But there have not been studied concerning seabream even though the production is over 30% of the total production of fish aquaculture in resent and it occupied an important status in the fish aquaculture. The objectives of this study is to forecast the future movement of sea bream aquaculture. The first goal of the study is to contribute to managerial and economic studies on the aquaculture industry. The second goal is to identify the factors influencing the competition between production areas and to identify the mechanisms involved. This study will examine the competitive power in individual producing area, its behavior, and its compulsory factors based on case study. Producing areas will be categorized according to following parameters : distance to market and availability of transportation, natural environment, the time of formation of producing areas (leaderㆍfollower), major production items, scale of business and producing areas, degree of organization in production and sales. As a factor in shaping the production area of sea bream aquaculture, natural conditions especially the water temperature is very important. Sea bream shows more active feeding and faster growth in areas located where the water temperature does not go below 13∼14$^{\circ}C$ during the winter. Also fish aquaculture is constrained by the transporting distance. Aquacultured yellowtail is a mass-produced and a mass-distributed item. It is sold a unit of cage and transported by ship. On the other hand, sea bream is sold in small amount in markets and transported by truck; so, the transportation cost is higher than yellow tail. Aquacultured sea bream has different product characteristics due to transport distance. We need to study live fish and fresh fish markets separately. Live fish was the original product form of aquacultured sea bream. Transportation of live fish has more constraints than the transportation of fresh fish. Death rate and distance are highly correlated. In addition, loading capacity of live fish is less than fresh fish. In the case of a 10 ton truck, live fish can only be loaded up to 1.5 tons. But, fresh fish which can be placed in a box can be loaded up to 5 to 6 tons. Because of this characteristics, live fish requires closer location to consumption area than fresh fish. In the consumption markets, the size of fresh fish is mainly 0.8 to 2kg.Live fish usually goes through auction, and quality is graded. Main purchaser comes from many small-sized restaurants, so a relatively small farmer and distributer can sell it. Aquacultured sea bream has been transacted as a fresh fish in GMS ,since 1993 when the price plummeted. Economies of scale works in case of fresh fish. The characteristics of fresh fish is as follows : As a large scale demander, General Merchandise Stores are the main purchasers of sea bream and the size of the fish is around 1.3kg. It mainly goes through negotiation. Aquacultured sea bream has been established as a representative food in General Merchandise Stores. GMS require stable and mass supply, consistent size, and low price. And Distribution of fresh fish is undertook by the large scale distributers, which can satisfy requirements of GMS. The market share in Tokyo Central Wholesale Market shows Mie Pref. is dominating in live fish. And Ehime Pref. is dominating in fresh fish. Ehime Pref. showed remarkable growth in 1990s. At present, the dealings of live fish is decreasing. However, the dealings of fresh fish is increasing in Tokyo Central Wholesale Market. The price of live fish is decreasing more than one of fresh fish. Even though Ehime Pref. has an ideal natural environment for sea bream aquaculture, its entry into sea bream aquaculture was late, because it was located at a further distance to consumers than the competing producing areas. However, Ehime Pref. became the number one producing areas through the sales of fresh fish in the 1990s. The production volume is almost 3 times the production volume of Mie Pref. which is the number two production area. More conversion from yellow tail aquaculture to sea bream aquaculture is taking place in Ehime Pref., because Kagosima Pref. has a better natural environment for yellow tail aquaculture. Transportation is worse than Mie Pref., but this region as a far-flung producing area makes up by increasing the business scale. Ehime Pref. increases the market share for fresh fish by creating demand from GMS. Ehime Pref. has developed market strategies such as a quick return at a small profit, a stable and mass supply and standardization in size. Ehime Pref. increases the market power by the capital of a large scale commission agent. Secondly Mie Pref. is close to markets and composed of small scale farmers. Mie Pref. switched to sea bream aquaculture early, because of the price decrease in aquacultured yellou tail and natural environmental problems. Mie Pref. had not changed until 1993 when the price of the sea bream plummeted. Because it had better natural environment and transportation. Mie Pref. has a suitable water temperature range required for sea bream aquaculture. However, the price of live sea bream continued to decline due to excessive production and economic recession. As a consequence, small scale farmers are faced with a market price below the average production cost in 1993. In such kind of situation, the small-sized and inefficient manager in Mie Pref. was obliged to withdraw from sea bream aquaculture. Kumamoto Pref. is located further from market sites and has an unsuitable nature environmental condition required for sea bream aquaculture. Although Kumamoto Pref. is trying to convert to the puffer fish aquaculture which requires different rearing techniques, aquaculture technique for puffer fish is not established yet.

  • PDF

Long-term changes in the small yellow croaker, Larimichthys polyactis, population in the Yellow and East China Seas (황해 및 동중국해 참조기, Larimichthys polyactis 자원의 장기변동)

  • Yeon, In-Ja;Lee, Dong-Woo;Lee, Jae-Bong;Choi, Kwang-Ho;Hong, Byung-Kyu;Kim, Joo-Il;Kim, Young-Seop
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.392-405
    • /
    • 2010
  • The population of small yellow croaker, Larimichthys polyactis, in the Yellow and East China Seas has decreased significantly since the mid 1970s. Several management measures have been introduced to conserve it, but population size remains low. To rebuild this population, it is now necessary to consider more effective management methods based on the stock assessment. To determine long-term population changes, fishery and biological data collected over 34 years (1969-2002) were analysed. Yearly fish length compositions were analysed for the time periods 1968 through 1970, 1978 through 1982, and 1993 through 2002; and catch data was available from 1969 to 2002. Annual population sizes were calculated based on length composition, the relationship between total length and body weight, and total landings. Analyses showed that since the 1970s, average size of harvested fish decreased; the proportion of less mature fish (smaller than the 50% maturity length, 19cm) in catches has increased and the estimated biomass has decreased significantly. Consequently, the main management recommendation is that juvenile fish need to be better protected to allow the rebuilding of resources to a more sustainable population level. This will require fish size limit, permissible mesh size, and closed area and season regulations.