• Title/Summary/Keyword: fish acute toxicity

Search Result 102, Processing Time 0.022 seconds

Effects of antioxidant enzymes and bioaccumulation in eels (Anguilla japonica) by acute exposure of waterborne cadmium

  • Ahn, Tae-Young;Park, Hee-Ju;Kim, Jun-Hwan;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.8
    • /
    • pp.23.1-23.10
    • /
    • 2020
  • This study was conducted to evaluate the acute effects of waterborne cadmium exposure on bioaccumulation and antioxidant enzymes in eels (Anguilla japonica) and to determine the median lethal concentration (LC50). Fish were exposed to different cadmium concentrations (0, 0.15, 0.30, 0.61, 1.83, 3.08, 3.67, 4.29, and 5.51 mg L-1) for 96 h. The LC50 of A. japonica to cadmium was 3.61 mg L-1. Cadmium accumulation generally increased in tissues with increasing waterborne cadmium concentrations. At ≥ 1.83 mg L-1 exposure, all tissues accumulated significant cadmium concentrations compared with the control group, in the order of kidney > liver > gill > spleen > muscle. Measurements of variation in actual cadmium concentrations showed that a reduction of the metal in experimental water was related to cadmium accumulation in tissues. As activity alteration of antioxidant enzymes for reactive oxygen species, superoxide dismutase and catalase activities increased at ≥ 0.61 mg L-1 significantly, glutathione peroxidase and glutathione S-transferase activities were not significantly changed. The results of this study suggest that acute exposure to waterborne cadmium is potentially fatal to A. japonica due to the metal's major accumulation in various tissues and the effect of antioxidant enzyme activity.

Toxicity of Disinfectants in Flounder Paralichthys olivaceus, Black Rockfish Sebastes pachycephalus and Black Sea Bream Acanthopagrus schlegelii (시판 소독제의 넙치 Paralichthys olivaceus, 조피볼락 Sebastes pachycephalus, 감성돔 Acanthopagrus schlegelii에 대한 독성)

  • Park, Kyung-Hee;Kim, Seok-Ryel;Kang, So-Young;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of Aquaculture
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Toxicity of ten commercial disinfectants(hydrogen peroxide, sodium hypochlorite, chlorine dioxide, povidon iodine, formaldehyde, glutaraldehyde, quaternary ammonium compounds(QAC), didecyl dimethyl ammonium chloride(DDAC), ortho-dichlorobenzene, and copper sulfate) was measured by chinook salmon embryo-214 cell line and three fish species: flounder Paralichthys olivaceus, black rockfish Sebastes pachycephalus, and black sea bream Acanthopagrus schlegelii. The $LC_{50}$ levels of 24 hours acute toxicity with the ten disinfectants were tested in three species of fish. Effectiveness of ten chemical disinfectants were varied by each chemical as well as by species. Hydrogen peroxide showed the higest activity at 201, 269, and 139 ppm in the flounder, the black rockfish, and black sea bream, respectively. DDAC showed the lowest activity at 2.1, 1.0, and 1.5 ppm in the flounder, the black rockfish, and black sea bream, respectively. The highest variation was observed in copper sulfate by both the chemicals and the species.

Comparison of toxicity and detoxifying enzyme activity in carp (Cyprinus carpio) treated with some synergistic pesticides (농약 상호간의 협력작용에 의한 잉어의 독성과 해독효소 활성의 비교)

  • Yang, Kwang-Rok;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.367-374
    • /
    • 1992
  • This study was performed to investigate effects of probable detoxifying enzyme activity and toxicity by pesticides and their combinations in the fresh water fish. Seven pesticides including IBP, isoprothiolane, cartap, ridomil, chlorothalonil, captafol and endosulfan were subjected to investigate for their acute toxicites and synergism possibilities. The $LC_{50}$ value of endosulfan was the lowest at showing 0.0079 ppm and that of metalaxyl was the highest as showing 40 ppm over. The synergism effects of relative pesticides were observed in the combinations of isoprothiolane+IBP and isoprothiolane+cartap. The changes of glycogen contents in fish liver were assayed for 5 pesticides and its highest inhibition effect of glycogen showed in IBP treated fish. The activity of probable detoxifying enzymes including carboxylesterase (CE), glutathion S-transferase (GST) and lactate dehydrogenase (LDH) were assayed in carp liver at dose of sublethal concentrations. Effects of pesticides on changes in each enzyme activities were as follows: carboxylesterase (CE) activities were the highest in IBP and gtutathion S-transferase (GST) activities were the highest in iosoprothiolane+IBP. Both activities of carboxylesterase (CE) and glutahtion S-transferase (GST) were increased by 5 chemicals. The highest LDH activity showed in isoprothiolane treated fish, while the lowest activity was observed in isoprothiolane+cartap. Sublethal exposure to cartap and isoprothiolane+cartap in carp exerted various effects on LDH activity.

  • PDF

Fish Safety and Antimicrobial Activity of Natural Sulfur Solution on Aquatic Microorganisms (Saprolegnia parasitica) Isolated from Misgurnus mizolepis (미꾸라지(Misgurnus mizolepis)에서 분리된 수생균 (Saprolegnia parasitica)에 대한 천연유황수의 항균 활성 및 처리에 대한 어류 안전성)

  • Yi, Seung-Won;Lee, Seung-Hyeop;Lee, Sang-Jong;Kim, Mi-Hee;Lee, Hye-Hyun;Chu, Saet-Byul;Kim, Kyung-Hee;Lee, Hee Jung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.116-122
    • /
    • 2017
  • Basic dyes such as malachite green and methylene blue have been used as disinfectants to control water fungal infections since the 1930s. However, after succeeding reports of carcinogenicity and bioaccumulation of the dye, their use was forbidden in lieu of public health. This study undertook to evaluate the therapeutic effect of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica infection, and its safety in fish. In vitro antifungal evaluation of EM-PSS inhibited the growth of S. parasitica mycelia at concentrations of 50 ppm or higher. The acute toxicity test of EM-PSS to the mud fish (Misgurnus mizolepis) measured a no effect concentration (NOEC) at 100 ppm, the lowest effect concentration (LOEC) at 125 ppm, and the half-lethal concentration ($LC_{50}$) at 125 ppm in juvenile and 250 ppm in the immature stage. In addition, the ecotoxicity test of EM-PSS using Daphnia magna inhibited swimming of D. magna at concentrations of 100 ppm or less. Lastly, the EM-PSS prevented infection of S. parasitica to mud fish, at concentrations of 50 ppm. Furthermore, at 100 ppm concentration, the EM-PSS showed no acute toxicity on mud fish, nor any eco-toxic effects on D. magnano. Therefore, we conclude that carcinogenic disinfectants such as malachite green and methylene blue could be replaced by EM-PSS to remove S. parasitica in mud fish farming, and might be a potential eco-friendly disinfectant in aquaculture.

Toxic Effects of Aluminium on Freshwater Animals: Review (알루미늄이 수생동물에 미치는 독성에 관한 소고)

  • Park, Chan Jin;Kim, Dae Han;Han, Sang Ho;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.271-285
    • /
    • 2014
  • Aluminum flows into the river from the abandoned mine leachate, industrial wastewater, and sewage and is responsible for acute toxicity in aquatic organisms. Recently, the number of reports have indicated the increased toxicity in a variety of aquatic organisms' due to the aluminum toxicity. In this study, we reviewed the toxicity of aluminum on aquatic invertebrates, fishes and amphibians and suggested the guideline for management of aluminum residues in aquatic environment and strategies for aluminum toxicity evaluation. In aquatic animals aluminum complexes evoke gill dysfunction primarily, the cytotoxicity, genotoxicity, oxidative stress, disruption of endocrine function, reproductive success, metabolism and homeostasis. Notably, at environmentally relevant concentration, aluminum complex can alter the hormone levels in fish in acidic condition. Further, since the solubility of aluminum is higher in the acidic and basic conditions, thus it is likely that the toxic effects of aluminum may not only occur in acidic water near the abandoned mines but also in lakes and rivers, where pH is raised by algal bloom.

Comparison of the Susceptibility of Freshwater Organisms for the Acute Toxicity Test of Pesticides. (농약의 급성독성 평가를 위한 담수생물의 감수성 비교연구)

  • Shin, Chun-Chul;Lee, Sung-Kyu;Roh, Jung-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.130-134
    • /
    • 1986
  • This study was performed to determine the aquatic toxicity of 3 chemicals(butachlor, trichlorfon, and BPMC) to 3 teat organisms (fish, crustacean, and algae) which represent each trophic level in freshwater ecosystem, and to compare the sensitivity of these organisms to 3 chemicals with short-term test. Scenedesmus subspicatus, unicellular algae, was the most sensitive species of 3 organisms to butachlor and the ratio between least and most sensitive organisms was 5.7. Moina rectirostris, freshwater invertebrate, was also more sensitive organism than S. subspicatus and Oryzias latipes to trichlorfon and BPMC, and their ratios were 260,000 and 5,090. As a result, remarkable differences were observed in the sensitivities among the test organisms with different chemical structure and mode of action of the chemicals. Therefore, it is recommended that a set of tests on different species, including the representative species of fish, invertebrate, and algae, should be required in short-term aquatic toxicity test for chemicals introduced into the Korean environment.

  • PDF

Initial Risk Assessment of Disodium Disulphite in OECD High Production Volume Chemical Program

  • Sanghwan Song;Park, Yoonho;Park, Hye-Youn;Kwon, Min-Jeoung;Koo, Hyun-Ju;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Disodium disulphite, the HPV chemical, was assigned to Korea in order to implement OECD SIDS program in 1999. It was produced about 3,200 ton/year in 1998. This report evaluates the toxic potency of disodium disulphite based on the environmental and mammalian effects as well as human exposure. Oral $LD_{50}$ in rats is 1,540 mg/kg b.w. and effects was observed to the stomach, liver and the GI track that was filled with blood. For repeated dose toxicity, the predominant effect was the induction of stomach lesion due to local irritation. The no observed adverse effect lever for local (stomach irritation) was about 217 mg/kg bw/day. There is no evidence that disodium disulphite is genotoxic in vivo. No reproductive or developmental toxicty of disodium disulphite was observed for the period up to 2 yr and over three generation. In humans, urticaria and asthma with itching, edema, rhinitis, and nasal congestion were reported. Disodium disulphite is unlikely to induce respiratory sensitization but may enhance symptom of asthma in sensitive individuals. This chemical would be mainly transported to water compartment when released to environmental compartments since it is highly water soluble (470 g/l at 20). Low K oc (2.447) indicates disodium disulphite is so mobile in soil that it may not stay in the terrestrial compartment. The chemical has been tested in a limited number of aquatic species. hem acute toxicity test to fish, 96 hr-$LC_{50}$ was > 100 mg/1. For algae, 72 hr-$XC_{50}$ was 48.1 mg/1. For daphnid, the acute toxicity value of 48 hr-$EC_{50}$ was 88.76 mg/1, and chronic value of 21day-NOEC was > 10 mg/1. Therefore, PNEC of 0.1 mg/l for the aquatic organism was obtained from the chronic value of daphnid using the assessment factor of 100. Based on these data the disodium disulphite was recommended as low priority for further post-SIDS work in OECD.

Initial Risk Assessment of Acetanilide with Respect to Ecological Integrity (아세트아닐리드의 초기 환경위해성 평가)

  • Lee, Su-Rae;Park, Seon-Ju;Lee, Mi-Kyung;Nam, U-Kyung;Chung, Sun-Hwa;Seog, Geum-Su;Park, Kwang-Sik;Kim, Kyun;Kim, Yong-Hwa
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.1_2
    • /
    • pp.19-29
    • /
    • 2000
  • Acetanilide may be released into the environment through air and wastewater from its production and use sites as an intermediate in the synthesis of pharmaceuticals and dyes. Acetanilide is biodegraded rapidly under aerobic conditions and decomposed by indirect photolysis in the presence of OH radicals. An estimated bioconcentration factor of 4.5 suggests that bioaccumulation in aquatic organisms is low. Ecotoxicological data on acetanilide exist on acute toxicity to fishes of 4 species only. According to the EUSES system, the lowest PNEC (Predicted no effect concentration) in fishes is 0.01 mg/1 and PEC (Predicted environmental concentration) for surface water on a regional scale is 9.1$\times$10$\^$-5/mg/l as the worst case. RCR (Risk characterization ratio) of acetanilide for surface water on a regional scale was estimated as 9.1$\times$10-3, which is safe enough for fishes, RCR on a local basis slightly exceeds the value 1 in water and sediment; that is, 1.3 and 1.6, respectively, which suggests the existence of ecotoxicological risk at the vicinity of the manufacturing site. For the refinement of environmental risk assessment on acetanilide, more data should be collected regarding prolonged fish toxicity, acute toxicity toward daphnia and algae. It is, therefore, recommended that acetanilide should be a candidate for further work to supplement the lacking data until it is proved to be safe in the ecotoxicological aspects.

  • PDF

Effects of TBTCl on the Behavior and Reproduction of the Guppy (Poecilia reticulata) (TBTCl이 구피(Poecilia reticulata)의 행동과 번식에 미치는 영향)

  • 윤명희;오지현
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2004
  • Sexually matured guppies (Poeiria reticulata) were exposed to TBTCI (0.1, 0.32, 1, 3.2, 10, 25, 32, 50, 75 and 100 $\mug/l$) for 144 hours to determine the bioaccumulation rate and effects on the reproduction and behavior. The ratio of TBT residues to $\SigmaBTs\; (TBT:\SigmaBTs)$ was 67% or higher in all the guppies exposed to TBTCl, and the higher the level of TBTCl exposed, the higher the ratio of TBT:∑BTs, suggesting that the higher the level of TBTCl exposed, the lower the metabolism rate of the fish. TBTCl exposure led to a poor reproductivity and an abnormal sexual behavior in the fish, i.e. a reduced number of the male sexual sigmoid display and of spermatophore in the efferent duct was observed in the fish exposed to 0.1 $\mug/l$ and higher levels of TBTCl, and a decreasing ratio of the testicular spermatophore cyst to the whole germ cell cysts was observed in the fish exposed to 0.32∼10 $\mug/l$)of TBTCl. The reduced ratio of the spermatophore cyst seems to be an effect of the endocrine disrupter inhibiting spermiogenesis. In the fish exposed to 25 $\mug/l$ and higher levels of TBTCl, more serious effects, such as a rapid increase of mortality, the necrosis of most of the germ cells, great damages in Sertoli cells and epithelial cells of the efferent duct, a significant increase of abnormal swimming behavior, and a cessation of feeding were observed, which suggest the acute toxicity of TBTCl inhibiting not only the reproduction and behavior but also the survival of the fish itself.

Toxicity and Endocrine Disrupting Effect of Parabens (파라벤류의 독성과 내분비계장애 효과)

  • Ahn, Hae-Sun;Nah, Won-Heum;Lee, Jae-Eun;Oh, Yeong-Seok;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.323-333
    • /
    • 2009
  • Parabens are alkyl esters of p-hydroxybenzoic acid, which are widely used in foods, cosmetics, and pharmaceutic products as preservatives. Absorbed parabens are metabolized fastly and excreted. Actually human body is exposed to complex mixture of parabens. Safety assessment at various toxicological end points revealed parabens have a little acute, subacute and chronic toxicities. Some reports have argued that as parabens have estrogenic activity, they are associated with the incidence of breast cancer through dermal absorption by cosmetics. There is an inference that antiandrogenic activity of parabens may give rise to a lesion of male reproductive system, but also there is an contrary. At cellular level, parabens may inhibit mitochondrial function of sperms and androgen production in testis, but also there is an contrary. Parabens seem to have little or no toxicity in embryonic development. Parabens can cause hemolysis, membrane permeability change in mitochondria and apoptosis, suggesting cellular toxicity of parabens. Parabens evoked endocrine disruption in several fish species and have toxic effect on small invertebrates and microbes. Therefore, the toxicity of parabens should be considered as a potentially toxic chemical in the freshwater environment. In conclusion, though parabens may be considered as a low toxic chemical, more definite data are required concerning the endocrine disrupting effect of parabens on human body and aquatic animals according to route and term of exposure as well as the residual concentration of parabens.