• Title/Summary/Keyword: first-order shear deformation shell theory

Search Result 98, Processing Time 0.021 seconds

Postbuckling analysis of laminated composite shells under shear loads

  • Jung, Woo-Young;Han, Sung-Cheon;Lee, Won-Hong;Park, Weon-Tae
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.373-394
    • /
    • 2016
  • The postbuckling behavior of laminated composite plates and shells, subjected to various shear loadings, is presented, using a modified 8-ANS method. The finite element, based on a modified first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the various location and number of enhanced membrane and shear interpolation. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. The effects of various types of lay-ups, materials and number of layers on initial buckling and postbuckling response of the laminated composite plates and shells for various shear loading have been discussed. In addition, the effect of direction of shear load on the postbuckling behavior is studied. Numerical results and comparisons of the present results with those found in the literature for typical benchmark problems involving symmetric cross-ply laminated composites are found to be excellent and show the validity of the developed finite element model. The study is relevant to the simulation of barrels, pipes, wing surfaces, aircrafts, rockets and missile structures subjected to intense complex loading.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli;M. Arefi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.263-273
    • /
    • 2023
  • This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.

The dynamic instability of FG orthotropic conical shells within the SDT

  • Sofiyev, Abdullah H.;Zerin, Zihni;Allahverdiev, Bilender P.;Hui, David;Turan, Ferruh;Erdem, Hakan
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.581-591
    • /
    • 2017
  • The dynamic instability of truncated conical shells subjected to dynamic axial load within first order shear deformation theory (FSDT) is examined. The conical shell is made from functionally graded (FG) orthotropic material. In the formulation of problem a dynamic version of Donnell's shell theory is used. The equations are converted to a Mathieu-Hill type differential equation employing Galerkin's method. The boundaries of main instability zones are found applying the method proposed by Bolotin. To verify these results, the results of other studies in the literature were compared. The influences of material gradient, orthotropy, as well as changing the geometric dimensions on the borders of the main areas of the instability are investigated.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid (유체 유동을 고려한 경사기능재료 원통셸의 연성진동)

  • Kim, Young-Wann;Kim, Kyu-Ho;Wi, Eun-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

Parametric Resonance Characteristics of Laminated Composite Curved Shell Panels in a Hygrothermal Environment

  • Sahu, S.K.;Rath, M.K.;Datta, P.K.;Sahoo, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.332-348
    • /
    • 2012
  • The present study deals with the parametric resonance behaviour of laminated composite curved shell panels in a hygrothermal environment using Bolotin's approach. A simple laminated model is developed using first order shear deformation theory (FSDT) for the vibration and dynamic stability analysis of laminated composite shells subjected to hygrothermal conditions. A computer program based on the finite element method (FEM) in a MATLAB environment is developed to perform all necessary computations. Quantitative results are presented to show the effects of curvature, ply-orientations, degree of orthotropy and geometry of laminates on the parametric instability of composite curved shell panels for different temperature and moisture concentrations. The excitation frequencies of laminated composite panels decrease with the increase of temperature and moisture due to reduction of stiffness for all laminates.

Buckling of thick deep laminated composite shell of revolution under follower forces

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour;Hemmati, Mona
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.59-91
    • /
    • 2016
  • Laminated composite shells are commonly used in various engineering applications including aerospace and marine structures. In this paper, using semi-analytical finite strip method, the buckling behavior of laminated composite deep as well as thick shells of revolution under follower forces which remain normal to the shell is investigated. The stiffness caused by pressure is calculated for the follower forces subjected to external fibers in thick shells. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness-shear flexibility. Displacements and rotations in the middle surface of shell are approximated by combining polynomial functions in the meridional direction as well as truncated Fourier series with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix which accounts for variation of loads direction will be derived for each strip of the shell. Assembling of these matrices results in global load stiffness matrix which may be un-symmetric. Upon forming linear elastic stiffness matrix called constitutive stiffness matrix, geometric stiffness matrix and load stiffness matrix, the required elements for the second step analysis which is an eigenvalue problem are provided. In this study, different parameter effects are investigated including shell geometry, material properties, and different boundary conditions. Afterwards, the outcomes are compared with other researches. By considering the results of this article, it can be concluded that the deformation-dependent pressure assumption can entail to decrease the calculated buckling load in shells. This characteristic is studied for different examples.