• Title/Summary/Keyword: first-order shear deformation plate theory

Search Result 203, Processing Time 0.02 seconds

Analysis of functionally graded beam using a new first-order shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Tlidji, Y.;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.315-325
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory. The governing equations and boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory

  • Daouadj, Tahar Hassaine;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • This paper presents an original hyperbolic (first present model) and parabolic (second present model) shear and normal deformation theory for the bending analysis to account for the effect of thickness stretching in functionally graded sandwich plates. Indeed, the number of unknown functions involved in these presents theories is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. It is evident from the present analyses; the thickness stretching effect is more pronounced for thick plates and it needs to be taken into consideration in more physically realistic simulations. The numerical results are compared with 3D exact solution, quasi-3-dimensional solutions and with other higher-order shear deformation theories, and the superiority of the present theory can be noticed.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory

  • Djidar, Fatima Zohra;Hebali, Habib;Amara, Khaled;Tounsi, Abdelouahed;Bendaho, Boudjema;Ghazwani, M.H.;Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.725-734
    • /
    • 2022
  • This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs which have more number of variables.

A high precision shear flexible element for bending analysis of thick/thin triangular plate

  • Haldar, S.;Das, P.;Manna, M.C.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.79-90
    • /
    • 2004
  • A high precision shear deformable triangular element has been proposed for bending analysis of triangular plate. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has thirty-five degrees of freedom, which has been reduced to thirty by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different boundary conditions, side ratios (b/a) and thickness ratios (h/a = 0.001, 0.1 and 0.2) have been analyzed using the proposed shear locking free element. Concentrated and uniformly distributed transverse loads have been used for the analysis. The formulation is made based on first order shear deformation theory. For validation of the present element and formulation few results of thin triangular plate have been compared with the analytical solutions. Results for thick plate have been presented as new results.

Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations

  • Houari, Ali;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.423-434
    • /
    • 2018
  • In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing equations.

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

Vibration and stability analyses of thick anisotropic composite plates by finite strip method

  • Akhras, G.;Cheung, M.S.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.49-60
    • /
    • 1995
  • In the present study, a finite strip method for the vibration and stability analyses of anisotropic laminated composite plates is developed according to the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on the first-order shear deformation theory, the present method gives improved results for very thick plates while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness. A number of numerical examples are presented to show the effect of aspect ratio, length-to-thickness ratio, number of plies, fibre orientation and stacking sequence on the natural frequencies and critical buckling loads of simply supported rectangular cross-ply and arbitrary angle-ply composite laminates.