• Title/Summary/Keyword: first-order model

Search Result 4,231, Processing Time 0.037 seconds

A Systematic Approach to the Purchase Dependence (구매 종속적 수요에 대한 접근방법의 고찰)

  • Park, Changkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.70-78
    • /
    • 2020
  • Under the situation which customer orders are cancelled unless all products in the order are delivered all at once, this paper concentrates on the purchase dependent demands and explores the systematic approach to implant the purchase dependence into the multi-product inventory model. First, by acknowledging that it is a challenging task to formulate a suitable inventory model for the purchase dependence, we derive the optimal solution condition using an EOQ model and extend the optimal solution condition to periodic review models. Then, through the comparison simulation of four inventory policies regarding several degrees of purchase dependence, we demonstrate that the inventory models which consider the purchase dependence generate less total cost than the inventory models which ignore the purchase dependence. In general, the inventory models which consider the purchase dependence reduce the loss of sales by maintaining more inventories, which results in reducing the total cost. Consequently, the simulation result supports the effectiveness of this paper's approach. In addition, this paper uses the individual order period and joint order period obtained from the EOQ model for the multi-product inventory model. Through the in-depth analysis of comparing the two models, we observe that the model of using the joint order period produces less total cost when the degree of purchase dependence is high, but the model of using the individual order period produces less total cost when the degree of purchase dependence is low.

Composite Dependency-reflecting Model for Core Promoter Recognition in Vertebrate Genomic DNA Sequences

  • Kim, Ki-Bong;Park, Seon-Hee
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.648-656
    • /
    • 2004
  • This paper deals with the development of a predictive probabilistic model, a composite dependency-reflecting model (CDRM), which was designed to detect core promoter regions and transcription start sites (TSS) in vertebrate genomic DNA sequences, an issue of some importance for genome annotation. The model actually represents a combination of first-, second-, third- and much higher order or long-range dependencies obtained using the expanded maximal dependency decomposition (EMDD) procedure, which iteratively decomposes data sets into subsets on the basis of dependency degree and patterns inherent in the target promoter region to be modeled. In addition, decomposed subsets are modeled by using a first-order Markov model, allowing the predictive model to reflect dependency between adjacent positions explicitly. In this way, the CDRM allows for potentially complex dependencies between positions in the core promoter region. Such complex dependencies may be closely related to the biological and structural contexts since promoter elements are present in various combinations separated by various distances in the sequence. Thus, CDRM may be appropriate for recognizing core promoter regions and TSSs in vertebrate genomic contig. To demonstrate the effectiveness of our algorithm, we tested it using standardized data and real core promoters, and compared it with some current representative promoter-finding algorithms. The developed algorithm showed better accuracy in terms of specificity and sensitivity than the promoter-finding ones used in performance comparison.

Temperature-Dependent Hysteresis Investigation of Electro - Rheological Fluid Using Preisach Model (Preisach 모델을 이용한 ER 유체의 온도별 히스테리시스 특성 고찰)

  • 한영민;이호근;최승복;최형진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.316-322
    • /
    • 2002
  • This paper presents the temperature-dependent hysteresis identification of an electro-rheological (ER) fluid under various operating temperatures using the Preisach model. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. A couette type electroviscometer is then employed to obtain the field-dependent shear stress. In order to show the suitability of the Preisach model to predict a physical hysteresis phenomenon of the ER fluid, two significant properties; the minor loop property and the wiping-out property are experimentally examined under three dominant temperature conditions. Subsequently, the Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one under the both specified and unspecified temperatures. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Investigation on Temperature-dependent Hysteresis of Electro-rheological Fluid Using Preisach Model (Preisach 모델을 이용한 ER유체의 온도별 히스테리시스 특성 고찰)

  • 한영민;이호근;최승복;최형진
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.8
    • /
    • pp.648-656
    • /
    • 2002
  • This paper presents the identification of temperature-dependent hysteresis of an electro-rheological (ER) fluid under various operating temperatures using the Preisach model. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. A couette type electroviscometer is then employed to obtain the field-dependent shear stress. In order to show the suitability of the Preisach model to predict a physical hysteresis phenomenon of the ER fluid, two significant properties; the minor loop property and the wiping-out property are experimentally examined under three dominant temperature conditions. Subsequently, the Preisach model for the PMA-based ER fluid is identified using experimental multiple first order descending (FOD) curves. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one under the both specified and unspecified temperatures. In addition, the hysteresis model proposed in this work is compared to Bingham model.

Analysis of the Effects of CO Poisoning and Air Bleeding on the Performance of a PEM Fuel Cell Stack using First-Order System Model (일차계 모델을 이용한 고분자전해질 연료전지 스택의 CO Poisoning 및 Air Bleeding 효과 분석)

  • Han, In-Su;Shin, Hyun Khil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.370-375
    • /
    • 2013
  • We analyze the effects of CO poisoning and air bleeding on the performance of a PEM (polymer electrolyte membrane) fuel cell stack fabricated using commercial MEA (membrane electrode assembly). Dynamic response data from the experiments on the performance of a stack are identified by obtaining steady-state gains and time-constants of the first-order system model expressed as a first-order differential equation. It is found that the cell voltage of the stack decreases by 1.3-1.6 mV as the CO concentration rises by 1 ppm. The time elapsed to reach a new steady state after a change in the CO concentration is shortened as the magnitude of the change in the CO concentration increases. In general, the steady-state gain becomes bigger and the time-constant gets smaller with increasing the air concentration (air-bleeding level) in the reformate gas to restore the cell voltage. However, it is possible to recover 87%-96% of the original cell voltages, which are measured with free of CO, within 1-30 min by introducing the bleed air as much as 1% of the reformate gas into the stack.

Overfitting Probabilities using Dependent F-tests in Regression

  • Park, Chan-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.589-601
    • /
    • 2001
  • Probabilities of overfilling for model selection criteria are derived for several different situations. First, one candidate model with one extra variable is compared to the current model. This is expanded to m candidate models. We show that these comparisons are not independent and discuss ovefitting probabilities. Correlation between two F-tests is derived. Finally, probabilities are computed using the dependent F distributions and F distributions based on order statistics of independent Chi-squares.

  • PDF

극소공기막을 갖는 공기윤활 슬라이더 베어링의 윤활해석에 관한 연구

  • Hwang, Pyung;Yang, Seung-Han
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.94-98
    • /
    • 1996
  • The static characteristics of air-lubricated slider bearing were performed using direct numerical method. The equations of motion of slider bearing are solved simultaneously with the Reynolds equation for three degrees of freedom. The molecular rarefaction effect is considered. The models implemented include the first-order slip, the second-order slip, and the Boltzmann equation model derived by Fukui and Kaneko(FK model)

  • PDF

Study on the Runoff Estimation Considering Stream Order (하천차수를 고려한 유출량 산정에 관한 연구)

  • Choi, Jong-In;Kang, Sang-Hyeok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.17-27
    • /
    • 2005
  • In this paper the watershed is divided by stream order law of Horton to estimate the runoff with stream order. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A contour model is developed, validated, and adopted to estimate the effective stream order number for the runoff. The results show that the peak discharge which is divided into first river order was close to observed one. The contour model will provide effective informations to plan river works classified by sub-basins for river restoration.

Sensor placement driven by a model order reduction (MOR) reasoning

  • Casciati, Fabio;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.343-352
    • /
    • 2014
  • Given a body undergoing a stress-strain status as consequence of external excitations, sensors can be deployed on the accessible lateral surface of the body. The sensor readings are regarded as input of a numerical model of reduced order (i.e., the number of sensors is lower than the number of the state variables the full model would require). The goal is to locate the sensors in such a way to minimize the deviations from the response of the true (full) model. One adopts either accelerometers as sensors or devices reading relative displacements. Two applications are studied: a plane frame is first investigated; the focus is eventually on a 3D body.

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model

  • Nguyen, Dinh Kien;Tran, Thi Thom
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • An efficient and free of shear locking finite element model is developed and employed to study free vibration of tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of tapered FGM beam structures.