• Title/Summary/Keyword: first-generation hybrid

Search Result 64, Processing Time 0.025 seconds

Design and Construction Experiences of Solar Thermal Chemical Reaction Hybrid Power Generation (태양열 화학반응 복합발전시스템의 설계 및 시공 사례)

  • Lee, Sang-Nam;Kang, Yong-Heack;Kim, Jin-Soo;Yoon, Hwan-Ki;Yu, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.688-692
    • /
    • 2007
  • Solar thermal power generation allows additional benefits of cheap thermal storage and easy hybridization with other fossil fuel-driven power generation. KIER has been performing the project for solar thermal chemical reaction hybrid power generation. The project is to build and operate the first solar thermal chemical reaction hybrid power generation system in Korea. For concentrating solar thermal energy $m^2$ dish type concentrator was adapted and a heliostat is installed for reflecting horizontal insolation to the dish concentrator. At the moment building the dish concentrator including mirror and heliostat with sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

Gas Turbine and Fuel Cell Hybrid System for Distributed Power Generation (분산발전을 위한 가스터빈-연료전지 하이브리드 시스템)

  • Kim, Jae Hwan;Sohn, Jeong L.;Ro, Sung Tack;Kim, Tong Seop
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.354-360
    • /
    • 2001
  • Hybrid energy system of fuel cell and gas turbine is discussed as the system to be used in the distributed power generation. Discussion is first directed to the distributed power generation system which is expected to be more popularly introduced both in urban and isolated areas. In the next some characteristic features of fuel cell and micro gas turbine are shortly described. In the last discussion is turn to the fuel cell and micro gas turbine hybrid system. In particular, performance characteristics of a representative SOFC/MGT hybrid system are investigated through the concept design at various power capacity levels.

  • PDF

Development of High Efficiency Gas Turbine/Fuel Cell Hybrid Power Generation System (가스터빈/연료전지 혼합형 고효율 발전시스템 개발)

  • Kim Jae Hwan;Park Poo Min;Yang Soo Seok;Lee Dae Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.243-247
    • /
    • 2005
  • This paper describes an on-going national R&D program for the development of a gas turbine/fuel cell hybrid power generation system and related R&D activities. The final goal of this program is to develop a 200kW-c1ass gas turbine/fuel cell hybrid power generation system and achieve high efficiency over $60\%$ (AC/LHV). In the first phase of the development, a sub-scaled 60kW-class hybrid system based on the 50kW-class microturbine and the 5kW SOFC will be developed for the purpose of concept proof of the hybrid system. Core components such as the microturbine and the SOFC system are being developed and parallel preparation for system integration is being carried out. Before the core components are assembled in the final system. operating characteristics of a hybrid system are investigated from a simulated system where a turbocharger (microturbine simulator) and a modified fuel cell burner test facility (fuel cell simulator) are employed. The 60kW demonstration unit will be built up and operated to provide the valuable information for the preparation of the final full scale 200kW hybrid system.

  • PDF

Measurement of local wind and solar radiation for a hybrid power generation system design, Busan, Korea

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.799-806
    • /
    • 2013
  • As a first step to develop the hybrid power generation system, on this study, the time-variable resources of wind and solar radiation of Yeongdo, Busan, Korea had been measured during June and July 2013. And the quantity of generated wind power and solar photovoltaic had also been measured during the same period. It is found out that the wind mainly flew from southwest at the average speed of 2 m/s during 2 months. And it is clear that, because of the low wind velocity, the wind quality to generate the power seems not enough at this area. Meanwhile solar radiation was measured every daytime (6:00~19:00) and the peak solar radiation occurred around 12:00~14:00. And it is clear that the time-based variations of quantity of generated power were proportional to the variations of these resources, respectively. As a proposal, these 2 natural energies can be combined as resources of a hybrid system, because these 2 patterns are not overlapped so much on time base.

Artificial photosynthesis the first chapter: Light driven hydrogen generation from water

  • Kang, Sang Ook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.69-69
    • /
    • 2013
  • In the area of artificial photosynthesis, particularly for the generation of hydrogen form water, much attention has been paid on organic-inorganic hybrid system. Most of all, a dye/TiO2-combined system has been suggested and its potential utility was well manifested. However, due to its complicated nature of charge interactions in between dye and TiO2 -interface there remains a great challenge to establish the charge-activity relationship, per se light driven charge generation and recombination kinetics with respect to the amount of hydrogen produced. Further complexity of that hybrid system has been witnessed when sacrificial donor and aqueous media are considered. To unveil the operating mechanism on such a dye/TiO2-combined system, we have prepared organic dyes suitable to account for the effect of sacrificial donor as well as water interactions, and prepared the typical dye-grafted TiO2 films to investigate charge-activity relationship. Femtosecond flash photolysis clearly defined the dye effects anchored on to the TiO2 platform. In addition, photodynamic data contemplated well to the dye orientation proposed by the DFT calculations. Recent findings provide fundamental understanding on the dye-grafted TiO2 system and establish a firm background how future dye-sensitized organic-inorganic hybrid system can be designed for the light driven hydrogen generation from water.

  • PDF

A Biographical Study on Changeprocess of Values and Identities of the First-Generation Korean-German Females in Germany (재독한인1세대 여성의 가치관과 정체성의 변화과정에 대한 생애사 연구)

  • Yang, Yeung-Ja
    • Korean Journal of Social Welfare
    • /
    • v.62 no.3
    • /
    • pp.323-351
    • /
    • 2010
  • Through the biographical approach, the current research purports to reconstruct the Changeprocess of values and identities on the lives of the first-generation Korean-German females in Germany from the transnational perspective. Ten interviews were conducted, using Schutze's autobiographicalnarrative interview. Interview data were analyzed through the application of Schutze's autobiographical-narrative interview and Mayring's qualitative content analysis. Findings showed that on the onset of emigration, their values centered around hybrid collectivism. Their life in the process of emigration was characteristic of a shift to hybrid individualism. Furthermore, the life at beginning of emigration was found to be characterized by a singular regional identity. The process of emigration was shown to mark the conversion into dual identity, dual regional and dual national. Some theoretical and practical suggestions for the emigrants' welfare were finally offered that were associated with the process of values and identities changes in their life.

  • PDF

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Design and Development Trends of Solar Thermal Power Generation in Korea (국내의 태양열발전 기술개발 동향 및 설계)

  • Kang, Yong-Heack;Kim, Jin-Soo;Kim, Jong-Kyu;Lee, Sang-Nam;Yu, Chang-Kyun;Yoon, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.658-661
    • /
    • 2007
  • KIER have been developing high-temperature solar technology, especially the solar thermal power generation system, since the early of 1990s. In 1994, the first research on high temperature solar technology started with PTC technology. At the moment the most advanced 10kW dish system is under demonstration for 10kW solar thermal power generation. Test results showed about 19.2% solar to electricity average efficiency. Another research activities of KIER is hybrid power generation. For hybridization, solar and LFG(landfill gas) are used. Another hybrid solar system is with solar chemical reaction. In this system, power unit is gas turbine, and the heat content of fuel(like natual gas) is upgraded by solar energy through chemical reaction. The latest project on solar thermal power generation is for 1 MW power tower system. This is the Korea-China Joint project.

  • PDF

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.