• Title/Summary/Keyword: first shear plate deformation theory

Search Result 229, Processing Time 0.027 seconds

Efficient Thermal Stress Analysis of Laminated Composite Plates using Enhanced First-order Shear Deformation Theory (일차전단변형이론을 이용한 복합재료 적층평판의 효율적 열응력 해석)

  • Han, Jang-Woo;Kim, Jun-Sik;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.505-512
    • /
    • 2012
  • In this paper, an efficient yet accurate method for the thermal stress analysis using a first order shear deformation theory(FSDT) is presented. The main objective herein is to systematically modify transverse shear strain energy through the mixed variational theorem(MVT). In the mixed formulation, independent transverse shear stresses are taken from the efficient higher-order zigzag plate theory, and the in-plane displacements are assumed to be those of the FSDT. Moreover, a smooth parabolic distribution through the thickness is assumed in the transverse normal displacement field in order to consider a transverse normal deformation. The resulting strain energy expression is referred to as an enhanced first order shear deformation theory, which is obtained via the mixed variational theorem with transverse normal deformation effect(EFSDTM_TN). The EFSDTM_TN has the same computational advantage as the FSDT_TN(FSDT with transverse normal deformation effect) does, which allows us to improve the through-the-thickness distributions of displacements and stresses via the recovery procedure. The thermal stresses obtained by the present theory are compared with those of the FSDT_TN and three-dimensional elasticity.

Hygro-thermo-mechanical bending analysis of FGM plates using a new HSDT

  • Boukhelf, Fouad;Bouiadjra, Mohamed Bachir;Bouremana, Mohammed;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.75-97
    • /
    • 2018
  • In this paper, a novel higher-order shear deformation theory (HSDT) is proposed for the analysis of the hygro-thermo-mechanical behavior of functionally graded (FG) plates resting on elastic foundations. The developed model uses a novel kinematic by considering undetermined integral terms and only four variables are used in this model. The governing equations are deduced based on the principle of virtual work and the number of unknown functions involved is reduced to only four, which is less than the first shear deformation theory (FSDT) and others HSDTs. The Navier-type exact solutions for static analysis of simply supported FG plates subjected to hygro-thermo-mechanical loads are presented. The accuracy and efficiency of the present model is validated by comparing it with various available solutions in the literature. The influences of material properties, temperature, moisture, plate aspect ratio, side-to-thickness ratios and elastic coefficients parameters on deflections and stresses of FG plates are also investigated.

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Amina Attia;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates

  • Haldar, S.;Manna, M.C.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.213-229
    • /
    • 2003
  • A high precision shear deformable triangular element has been proposed for free vibration analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eight by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal laminate with concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme has been recommended, where the effect of rotary inertia has been included. For validation of the present element and formulation few results of isotropic trapezoidal plate and square composite laminate have been compared with those obtained from open literatures. The numerical results for composite trapezoidal laminate have been given as new results.

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

  • Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alwabli, Afaf S.;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.369-378
    • /
    • 2019
  • This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.471-487
    • /
    • 2020
  • In this work, the buckling analysis of material sandwich plates based on a two-parameter elastic foundation under various boundary conditions is investigated on the basis of a new theory of refined trigonometric shear deformation. This theory includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Applying the principle of virtual displacements, the governing equations and boundary conditions are obtained. To solve the buckling problem for different boundary conditions, Galerkin's approach is utilized for symmetric EGM sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of plate aspect ratio, elastic foundation coefficients, ratio, side-to-thickness ratio and boundary conditions on the buckling response of FGM sandwich plates. A good agreement between the results obtained and the available solutions of existing shear deformation theories that have a greater number of unknowns proves to demonstrate the precision of the proposed theory.