DOI QR코드

DOI QR Code

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song (Liaoning Key Laboratory of General Aviation, Shenyang Aerospace University) ;
  • Chen, Ying-Tao (Faculty of Aerospace engineering, Shenyang Aerospace University)
  • Received : 2012.09.08
  • Accepted : 2014.03.20
  • Published : 2014.09.25

Abstract

Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

Keywords

References

  1. Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2007), "Natural frequencies of FSDT cross-ply composite shell by multiquadrics", Compos. Struct., 77, 296-305. https://doi.org/10.1016/j.compstruct.2005.07.009
  2. Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011a), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B, 42, 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031
  3. Ferreira, A.J.M., Castro, L.M. and Bertoluzza, S. (2011b), "A wavelet collocation approach for the analysis of laminated shells", Compos. Part B, 42(1), 99-104. https://doi.org/10.1016/j.compositesb.2010.06.003
  4. Hu, H.T. and Ou, S.C. (2001), "Maximizations of fundamental frequency of laminated truncated conical shells with respect to fiber orientation", Compos. Struct., 52, 265-275. https://doi.org/10.1016/S0263-8223(01)00019-8
  5. Korhevskaya, E.A. and Mikhasev, G.I. (2006), "Free vibrations of a laminated cylindrical shell subjected to nonuniformly distributed axial forces", Mech. Solid., 41, 130-138.
  6. Lee, C.K., Liu, X. and Fan, S.C. (2003), "Local multiquadric approximation for solving boundary value problems", Comput. Mech., 30, 396-409. https://doi.org/10.1007/s00466-003-0416-5
  7. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B, 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062
  8. Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23, 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
  9. Roque, C.M.C., Cunha, D., Shu, C. and Ferreira, A.J.M. (2011), "A local radial basis functions-finite differences technique for the analysis of composite plates", Eng. Anal. Bound. Elem., 35, 363-374. https://doi.org/10.1016/j.enganabound.2010.09.012
  10. Roque, C.M.C., Cunha, D. and Ferreira, A.J.M. (2012), "Transient analysis of composite plates by a local radial basis functions-finite difference technique", Acta Mechanica Solida Sinica, 25(1), 22-36. https://doi.org/10.1016/S0894-9166(12)60003-2
  11. Timarchi, T. and Soldatos, K.P. (2000), "Vibrations of angle-ply laminated circular cylindrical shells subjected to different sets of edge boundary conditions", J. Eng. Math., 37, 211-230.
  12. Toorani, M.H. and Lakis, A.A. (2006), "Free vibrations of non-uniform composite cylindrical shells", Nucl. Eng. Des., 236, 1748-1758. https://doi.org/10.1016/j.nucengdes.2006.01.004
  13. Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
  14. Xiang, S., Li, G.C., Zhang, W. and Yang, M.S. (2011a), "A meshless local radial point collocation method for free vibration analysis of laminated composite plates", Compos. Struct., 93, 280-286. https://doi.org/10.1016/j.compstruct.2010.09.018
  15. Xiang, S., Bi, Z.Y., Jiang, S.X., Jin, Y.X. and Yang, M.S. (2011b), "Thin plate spline radial basis function for the free vibration analysis of laminated composite shells", Compos. Struct., 93, 611-615. https://doi.org/10.1016/j.compstruct.2010.08.018
  16. Xiang, S. and Kang, G.W. (2012), "Local thin plate spline collocation for free vibration analysis of laminated composite plates", Eur. J. Mech. A/Solid., 33, 24-30. https://doi.org/10.1016/j.euromechsol.2011.11.004

Cited by

  1. Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method vol.67, pp.6, 2014, https://doi.org/10.12989/sem.2018.67.6.659
  2. Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.679