References
- Ferreira, A.J.M., Roque, C.M.C. and Jorge, R.M.N. (2007), "Natural frequencies of FSDT cross-ply composite shell by multiquadrics", Compos. Struct., 77, 296-305. https://doi.org/10.1016/j.compstruct.2005.07.009
- Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C. and Polit, O. (2011a), "Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Compos. Part B, 42, 1276-1284. https://doi.org/10.1016/j.compositesb.2011.01.031
- Ferreira, A.J.M., Castro, L.M. and Bertoluzza, S. (2011b), "A wavelet collocation approach for the analysis of laminated shells", Compos. Part B, 42(1), 99-104. https://doi.org/10.1016/j.compositesb.2010.06.003
- Hu, H.T. and Ou, S.C. (2001), "Maximizations of fundamental frequency of laminated truncated conical shells with respect to fiber orientation", Compos. Struct., 52, 265-275. https://doi.org/10.1016/S0263-8223(01)00019-8
- Korhevskaya, E.A. and Mikhasev, G.I. (2006), "Free vibrations of a laminated cylindrical shell subjected to nonuniformly distributed axial forces", Mech. Solid., 41, 130-138.
- Lee, C.K., Liu, X. and Fan, S.C. (2003), "Local multiquadric approximation for solving boundary value problems", Comput. Mech., 30, 396-409. https://doi.org/10.1007/s00466-003-0416-5
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B, 43(8), 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062
- Reddy, J.N. and Liu, C.F. (1985), "A higher-order shear deformation theory of laminated elastic shells", Int. J. Eng. Sci., 23, 319-330. https://doi.org/10.1016/0020-7225(85)90051-5
- Roque, C.M.C., Cunha, D., Shu, C. and Ferreira, A.J.M. (2011), "A local radial basis functions-finite differences technique for the analysis of composite plates", Eng. Anal. Bound. Elem., 35, 363-374. https://doi.org/10.1016/j.enganabound.2010.09.012
- Roque, C.M.C., Cunha, D. and Ferreira, A.J.M. (2012), "Transient analysis of composite plates by a local radial basis functions-finite difference technique", Acta Mechanica Solida Sinica, 25(1), 22-36. https://doi.org/10.1016/S0894-9166(12)60003-2
- Timarchi, T. and Soldatos, K.P. (2000), "Vibrations of angle-ply laminated circular cylindrical shells subjected to different sets of edge boundary conditions", J. Eng. Math., 37, 211-230.
- Toorani, M.H. and Lakis, A.A. (2006), "Free vibrations of non-uniform composite cylindrical shells", Nucl. Eng. Des., 236, 1748-1758. https://doi.org/10.1016/j.nucengdes.2006.01.004
- Topal, U. (2013), "Pareto optimum design of laminated composite truncated circular conical shells", Steel Compos. Struct., 14(4), 397-408. https://doi.org/10.12989/scs.2013.14.4.397
- Xiang, S., Li, G.C., Zhang, W. and Yang, M.S. (2011a), "A meshless local radial point collocation method for free vibration analysis of laminated composite plates", Compos. Struct., 93, 280-286. https://doi.org/10.1016/j.compstruct.2010.09.018
- Xiang, S., Bi, Z.Y., Jiang, S.X., Jin, Y.X. and Yang, M.S. (2011b), "Thin plate spline radial basis function for the free vibration analysis of laminated composite shells", Compos. Struct., 93, 611-615. https://doi.org/10.1016/j.compstruct.2010.08.018
- Xiang, S. and Kang, G.W. (2012), "Local thin plate spline collocation for free vibration analysis of laminated composite plates", Eur. J. Mech. A/Solid., 33, 24-30. https://doi.org/10.1016/j.euromechsol.2011.11.004
Cited by
- Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method vol.67, pp.6, 2014, https://doi.org/10.12989/sem.2018.67.6.659
- Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.679