• Title/Summary/Keyword: first reheater

Search Result 4, Processing Time 0.021 seconds

Heat Transfer Study to Replace a Tube Bundle of Moisture Separator Reheater at Nuclear Power Plant (원전 습분분리재열기 튜브 번들 교체를 위한 열전달 고찰)

  • Choi, You-Sung;Choi, Kwang-Hee;Lee, Sang-Guk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • The plugging rate of reheater tubes of Wolsung unit 1 nuclear power plant has been increased by corrosion and erosion since 1990. As the dimensions of the new first stage reheater bundle tubes which were supplied by Hanjung company to replace were different from old one, numerical calculations are carried out for flow and heat transfer in the reheater bundle tubes of the N.P.P. Numerical calculations consists of thermal performance, drain line pressure drop, flow change by pressure drop of line, stress analysis of finned tubes and analysis of flow induced vibration. Computational analysis using heat transfer research institute program is adopted to verify the results of the numerical calculations. It contains the evalution of performance in the system with view to location of the new reheater bundle and it shows the differences between the numerical calculation results and heat transfer research institute program output.

  • PDF

Operation and Improvement Cases of FGD Non-leakage Type Gas-Gas Heater(GGH) for Coal Fired Power Plants (석탄화력 탈황설비 Non-leakage Type Gas-Gas Heater(GGH) 운영 및 개선사례)

  • Seong, Kijong;Lee, Changsik
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2017
  • This case covers the issues related to the operation problem, cause analysis and improvement cases of the FGD that employed the non-leakage type GGH in coal-fired power plant for the first time in Korea. In the Cooler, there was a main problem that the tube is damaged by the ash cutting due to the high velocity of flue gas in the duct and by the weak wear resistance of material. In the Reheater, there was a main problem that the tube was corroded due to chlorine and sulfur in the circumstance of the low temperature. In order to solve those problems, we have improved the Reheater tube and tube fins by coating enamel to reduce corrosion rate.

A Study on the Steam Hammering Characteristics by Sudden Closure of Main Stop Valve in the Main Steam Piping System of a Power Plant (화력발전소 주증기배관에서 밸브 차단에 따른 수증기 충격 특성에 관한 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • The present study has been carried out to analyze the effect of steam hammering on the steam piping system including the final superheater, the high pressure turbine, check valve and the first reheater by sudden stoping of main stop valve in a power plant. For the present steam hammering analysis, the well known Flowmaster software has been used to model the steam piping system and the time dependent characteristics of pressure and steam mass flow rate has been conducted. Using the result of the unsteady pressure and steam mass flow rate, the forces acting on the elbows in the piping system has been derived. From the present analysis, it has been elucidated that the elbow just before the main stop valve and the elbow near the connection pipe between bypass pipe and check valve had the largest force among the elbows in the steam piping system. The structural safety diagnostics study on the elbow and the supporting structures of the steam piping system of a power plant will be conducted in the future by the present results of the forces acting on the elbow.

Field Cooling Tests of Paddy Stored in Steel Bins with a Grain Cooler (곡물냉각기를 이용한 철제 원형빈에서 벼 냉각)

  • 김의웅;김동철
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • Two field cooling tests were conducted to evaluate the cooling characteristic of paddy with a prototype grain cooler. The first test was carried out during summer season in a steel bin with 180.3ton of paddy at Sunchon. And the second test was carried out during harvesting season in a steel bin with 272.2ton of paddy at Ulsan. At the first test, initial paddy temperature of 23.6$^{\circ}C$ was dropped to 14$^{\circ}C$, and initial moisture content of 19.9% was dropped to 19.3% after 52.5 hours of cooling. At the second test, initial paddy temperature of 16.1$^{\circ}C$ dropped to 5.5$^{\circ}C$ after 78.0 hours of cooling. And, at the first test, the average air flow rates of chilled air leaving the grain cooler and penetrating the grain layer were 77.5 ㎥/min and 42.5 ㎥/min, respectively. To prevent leakage of chilled air from plenum chamber of steel bin, which was about 45% of the average air flow rates of chilled air leaving the grain cooler, a proper method was required. The average total power consumption at the first test during summer was 22.1 ㎾ with control of fan damper. At the second test, it was 17.4 ㎾ due to controlling the capacity of compressor with unloading solenoid valve and changing the flow rates of hot refrigerant gas flowing into evaporator and reheater from compressor, resulting in 27% reduction of energy consumption.