• Title/Summary/Keyword: first principle

Search Result 1,755, Processing Time 0.028 seconds

Research Trend in Screw Compressor Development (스크류 압축기의 연구개발 동향)

  • Lee, Dae-Young;Kim, Youngil;Nam, Leem Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.151-158
    • /
    • 1998
  • The screw compressor is first invented by a Swedish engineer, Alf Lysholm in 1934. Since then, the development of the screw compressor idea for industrial applications has been continued by the Swedish research organization Svenska Rotor Maskiner, often identified by its initials SRM. The first industrial application of the machine was marketed as an air compressor in the 1950s. The screw compressor which is a positive displacement type compressor compresses gases by the rotation of a pair of mating rotors. The operation of this compressor is entirely rotary and dynamically in balance. Also there is no need for any valve mechanism and there exists less mechanical wear between the parts compared to the conventional reciprocating compressors. Due to these prominent features, the screw compressor has been rapidly spread into the air compressor market replacing the conventional reciprocating compressors and begun to be applied as a refrigerant compressor since the 1960s. In this work, the operation principle of the screw compressor is described in brief and the major design parameters affecting the compressor performance are classified. The international research trend in screw compressor development is introduced and the current situation in our country is described.

  • PDF

A Study on the Use of the Lunar Principle of MULDAE as a Predictor of Tidal Phenomenon (물때의 실용화에 관한 연구)

  • 박청정
    • Journal of the Korean Institute of Navigation
    • /
    • v.9 no.1
    • /
    • pp.41-81
    • /
    • 1985
  • Tidal phenomenon can be utilized by the wise and cautious mariner to safely perform his duties as pilot and navigator. It can be either a help or hindrance to the mariner. The principle of MULDAE which expresses the determination of the state of the tide based upon knowledge of the lunar date and it has been used in Korea since ancient times. The folk method of calculation was essentially based on an unsystematic division of the lunar month, traditionally using the numbers 7 or 8. As the lunar cycle is complete in 15 days the tidal cycle should also correspondence closely to the lunar date. This paper represents the first scientific attempt to systematically investigate this unique traditional method of tidal calculation and contains a comparison of the MULDAE and ordinary (solar based) tide calculation methods. MULDAE was compared with the standard tide table for standard and island ports in Korea from 1982 to 1985. This study concluded that MULDAE was indeed an accurate adn reliable predictor of tidal activity. Furthermore, the number 6 was found to be the correct divisor upon which to base MULDAE calculations Also a formula expressing MULDAE as a function was discovered. This research show that MULDAE can be applied nationwide and is a reliable and easy way to predict tides based upon mean figures for certain ports and island A calender showing MULDAE is presented here for the first time. A clear relationship between the MULDAE method of calculating tides and the use of ordinary tide tables is proven.

  • PDF

First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties

  • Kang, Byung-Sub;Song, Kie-Moon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.331-335
    • /
    • 2015
  • The ferromagnetic and electronic structure for the $Al_xGa_{1-x}P$ and Mn-doped $AlGaP_2$ was studied by using the self-consistent full-potential linear muffin-tin orbital method. The lattice parameters of un-doped $Al_xGa_{1-x}P$ (x = 0.25, 0.5, and 0.75) were optimized. The band-structure and the density of states of Mn-doped $AlGaP_2$ with or without the vacancy were investigated in detail. The P-3p states at the Fermi level dominate rather than the other states. Thus a strong interaction between the Mn-3d and P-3p states is formed. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the (Mn-3d)-(P-3p)-(Mn-3d) hybridization, which is attributed by the partially filled P-3p bands. The holes are mediated with keeping their 3d-characters, therefore the ferromagnetic state is stabilized by this double-exchange mechanism.

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

A Study on the Estimation Model of Liquid Evaporation Rate for Classification of Flammable Liquid Explosion Hazardous Area (인화성액체의 폭발위험장소 설정을 위한 증발율 추정 모델 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • In many companies handling flammable liquids, explosion-proof electrical equipment have been installed according to the Korean Industrial Standards (KS C IEC 60079-10-1). In these standards, hazardous area for explosive gas atmospheres has to be classified by the evaluation of the evaporation rate of flammable liquid leakage. The evaporation rate is an important factor to determine the zones classification and hazardous area distance. However, there is no systematic method or rule for the estimation of evaporation rate in these standards and the first principle equations of a evaporation rate are very difficult. Thus, it is really hard for industrial workplaces to employ these equations. Thus, this problem can trigger inaccurate results for evaluating evaporation range. In this study, empirical models for estimating an evaporation rate of flammable liquid have been developed to tackle this problem. Throughout the sensitivity analysis of the first principle equations, it can be found that main factors for the evaporation rate are wind speed and temperature and empirical models have to be nonlinear. Polynomial regression is employed to build empirical models. Methanol, benzene, para-xylene and toluene are selected as case studies to verify the accuracy of empirical models.

Magnetic Properties of Fe-Pt Nanowires with Linear and Zigzag Structures (전이금속 Fe-Pt 나노선의 자기적 성질)

  • Jang, Y.R.;Jo, Chul-Su;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.299-302
    • /
    • 2005
  • We investigated the structural md magnetic properties of Fe-Pt nanowires with linear and zigzag structures by using first-principle calculational methods. Structural degrees of freedom are optimized, the bond lengths and bond angles are determined, magnetic moments, spin density, and density of states are calculated. Results show that the zigzag structure is more stable than the linear one, and has a longer bond length and smaller magnetic moments for both Fe and Pt atoms.

Calculation on Effect of Impurity Addition on Electronic State of $MnO_2$ Oxide Semiconductor by First Principle Moleculat Orbital Method (제1원리 분자궤도계산법에 의한 $MnO_2$ 산화물 반도체의 전자상태에 미치는 불순물 첨가 효과의 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.99-102
    • /
    • 2003
  • The electronic structure of ${\beta}-MnO_2$ having impurities in the site of Mn was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}MO_{56}]^{-52}$ (M = transient metals). Madelung potential and spin polarization were considered for more exact calculations. As results of calculations, the energy levels of all electron included in the model were obtained. The energy band gap and positions of impurity levies were discussed in association with impurity 34 orbital that seriously affect electrical properties of $MnO_2$. It was shown that the energy band gap decreased with the increase of the atomic number of transient metal impurity.

  • PDF

Material Design Using Multi-physics Simulation: Theory and Methodology (다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션)

  • Hyun, Sangil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory

  • Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.;Tounsi, Abdeldjebbar;Algarni, Ali;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • In this work, the buckling and vibrational behavior of the composite beam armed with single-walled carbon nanotubes (SW-CNT) resting on Winkler-Pasternak elastic foundation are investigated. The CNT-RC beam is modeled by a novel integral first order shear deformation theory. The current theory contains three variables and uses the shear correction factors. The equivalent properties of the CNT-RC beam are computed using the mixture rule. The equations of motion are derived and resolved by Applying the Hamilton's principle and Navier solution on the current model. The accuracy of the current model is verified by comparison studies with others models found in the literature. Also, several parametric studies and their discussions are presented.

The Detection of Yellow Sand with Satellite Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.403-406
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands. This algorithm is a hybrid algorithm that has used two methods combined. The first method used the differential absorption in brightness temperature difference between $11{\mu}m\;and\;12{\mu}m\;(BTD1)$. The radiation at $11{\mu}m$ is absorbed more than at $12{\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m\;and\;11{\mu}m(BTD2)$. This technique is sensitive to dust loading, which the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. First the Principle Component Analysis (PCA), a form of eigenvector statistical analysis from the two methods, is performed and the aerosol pixel with the lowest 10% of the eigenvalue is eliminated. Then the aerosol index (AI) from the combination of BTD 1 and 2 is derived. We applied this method to Multi-functional Transport Satellite-l Replacement (MTSAT-1R) data and obtained that the derived AI showed remarkably good agreements with Ozone Mapping Instrument (OMI) AI and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth.