• Title/Summary/Keyword: first differential

Search Result 1,592, Processing Time 0.033 seconds

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

Practical and Provable Security against Differential and Linear Cryptanalysis for Substitution-Permutation Networks

  • Kang, Ju-Sung;Hong, Seok-Hie;Lee, Sang-Jin;Yi, Ok-Yeon;Park, Choon-Sik;Lim, Jong-In
    • ETRI Journal
    • /
    • v.23 no.4
    • /
    • pp.158-167
    • /
    • 2001
  • We examine the diffusion layers of some block ciphers referred to as substitution-permutation networks. We investigate the practical and provable security of these diffusion layers against differential and linear cryptanalysis. First, in terms of practical security, we show that the minimum number of differentially active S-boxes and that of linearly active S-boxes are generally not identical and propose some special conditions in which those are identical. We also study the optimal diffusion effect for some diffusion layers according to their constraints. Second, we obtain the results that the consecutive two rounds of SPN structure provide provable security against differential and linear cryptanalysis, i.e., we prove that the probability of each differential (resp. linear hull) of the consecutive two rounds of SPN structure with a maximal diffusion layer is bounded by $p^n(resp.q^n)$ and that of each differential (resp. linear hull) of the SDS function with a semi-maximal diffusion layer is bounded by $p^{n-1}(resp. q^{n-1})$, where p and q are maximum differential and linear probabilities of the substitution layer, respectively.

  • PDF

Reliability Analysis of Differential Settlement Using Stochastic FEM (추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석)

  • 이인모;이형주
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 1988
  • A stochastic numerical model for predictions of differential settlement of foundation Eoils is developed in this Paper. The differential settlement is highly dependent on the spatial variability of elastic modulus of soil. The Kriging method is used to account for the spatial variability of the elastic modulus. This technique provides the best linear unbiased estimator of a parameter and its minimum variance from a limited number of measured data. The stochastic finite element method, employing the first-order second-moment analysis for computations of error Propagation, is used to obtain the means, ariances, and covariances of nodal displacements. Finally, a reliability model of differential settlement is proposed by using the results of the stochastic FEM analysis. It is found that maximum differential settlement occurs when the distance between two foundations is approximately same It with the scale of fluctuation in horizontal direction, and the probability that differential settlement exceeds the allot.able vague might be significant.

  • PDF

Web based General Partial Differential Equation Solver using Multidimensional Finite Element Method - I. Model Development - (다차원 유한요소법을 이용한 웹 기반의 범용적 편미분 방정식 해석 모형의 개발 및 적용 - I. 모형의 개발 -)

  • Kim, Joon-Hyun;Han, Young-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.4
    • /
    • pp.319-326
    • /
    • 2001
  • This study is aimed at the development of a comprehensive web-based partial differential equation solver (WPDES) using multidimensional finite element method, which can be operated on the basis of world wide web. Overall issues of engineering and environmental information management and facility control could be implemented using this solver. This paper describes the development technique of the model, which is first part on development of partial differential equation solver. Conventional commercial general solver of computational fluid dynamics problems were investigated. All the relevant environmental models were analyzed to develop integrated environmental management system using WPDES. The governing equations and the parameters of investigated models were analyzed and integrated. Several numerical modules were invented for each partial differential term in partial differential equation of many related modeling problems. Each module was coded in the fashion of object oriented method, and was combined independently for the overall governing equation. WPDES has unique characteristic, which can analyze the problem through the suitable combination of modules without development of additional models for each environment problem with different governing equation, main variables, and parameters.

  • PDF

Kinetic Analysis and Mathematical Modeling of Cr(VI) Removal in a Differential Reactor Packed with Ecklonia Biomass

  • Park, Dong-Hee;Yun, Yeoung-Sang;Lim, Seong-Rin;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1720-1727
    • /
    • 2006
  • To set up a kinetic model that can provide a theoretical basis for developing a new mathematical model of the Cr(VI) biosorption column using brown seaweed Ecklonia biomass, a differential reactor system was used in this study. Based on the fact that the removal process followed a redox reaction between Cr(VI) and the biomass, with no dispersion effect in the differential reactor, a new mathematical model was proposed to describe the removal of Cr(VI) from a liquid stream passing through the differential reactor. The reduction model of Cr(VI) by the differential reactor was zero order with respect to influent Cr(IlI) concentration, and first order with respect to both the biomass and influent Cr(VI) concentrations. The developed model described well the dynamics of Cr(VI) in the effluent. In conclusion, the developed model may be used for the design and performance prediction of the biosorption column process for Cr(VI) detoxification.

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

WEAKLY STOCHASTIC RUNGE-KUTTA METHOD WITH ORDER 2

  • Soheili, Ali R.;Kazemi, Zahra
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.135-149
    • /
    • 2008
  • Many deterministic systems are described by Ordinary differential equations and can often be improved by including stochastic effects, but numerical methods for solving stochastic differential equations(SDEs) are required, and work in this area is far less advanced than for deterministic differential equations. In this paper,first we follow [7] to describe Runge-Kutta methods with order 2 from Taylor approximations in the weak sense and present two well known Runge-Kutta methods, RK2-TO and RK2-PL. Then we obtain a new 3-stage explicit Runge-Kutta with order 2 in weak sense and compare the numerical results among these three methods.

  • PDF

NONLINEAR DIFFERENTIAL INCLUSIONS OF SEMIMONOTONE AND CONDENSING TYPE IN HILBERT SPACES

  • Abedi, Hossein;Jahanipur, Ruhollah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.421-438
    • /
    • 2015
  • In this paper, we study the existence of classical and generalized solutions for nonlinear differential inclusions $x^{\prime}(t){\in}F(t,x(t))$ in Hilbert spaces in which the multifunction F on the right-hand side is hemicontinuous and satisfies the semimonotone condition or is condensing. Our existence results are obtained via the selection and fixed point methods by reducing the problem to an ordinary differential equation. We first prove the existence theorem in finite dimensional spaces and then we generalize the results to the infinite dimensional separable Hilbert spaces. Then we apply the results to prove the existence of the mild solution for semilinear evolution inclusions. At last, we give an example to illustrate the results obtained in the paper.

ON DIFFERENTIAL INVARIANTS OF HYPERPLANE SYSTEMS ON NONDEGENERATE EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES

  • HONG, JAEHYUN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Given a complex submanifoldM of the projective space $\mathbb{P}$(T), the hyperplane system R on M characterizes the projective embedding of M into $\mathbb{P}$(T) in the following sense: for any two nondegenerate complex submanifolds $M{\subset}\mathbb{P}$(T) and $M^{\prime}{\subset}\mathbb{P}$(T'), there is a projective linear transformation that sends an open subset of M onto an open subset of M' if and only if (M,R) is locally equivalent to (M', R'). Se-ashi developed a theory for the differential invariants of these types of systems of linear differential equations. In particular, the theory applies to systems of linear differential equations that have symbols equivalent to the hyperplane systems on nondegenerate equivariant embeddings of compact Hermitian symmetric spaces. In this paper, we extend this result to hyperplane systems on nondegenerate equivariant embeddings of homogeneous spaces of the first kind.