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WEAKLY STOCHASTIC RUNGE-KUTTA METHOD WITH
ORDER 2

ALI R. SOHEILI* AND ZAHRA KAZEMI

ABSTRACT. Many deterministic systems are described by Ordinary differ-
ential equations and can often be improved by including stochastic effects,
but numerical methods for solving stochastic differential equations(SDEs)
are required, and work in this area is far less advanced than for deter-
ministic differential equations. In this paper,first we follow [7] to describe
Runge-Kutta methods with order 2 from Taylor approximations in the
weak sense and present two well known Runge-Kutta methods, RK2-TO
and RK2-PL. Then we obtain a new 3-stage explicit Runge-Kutta with or-
der 2 in weak sense and compare the numerical results among these three
methods.
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1. Introduction

Many physical systems are modeled by SDEs, where random effects are being
modeled by a Wiener process (see, for example, [6], [4], [3]) that is nowhere
differentiable [2]. Because such differential equations cannot usually be solved
analytically, so numerical methods are required and should be designed to per-
form with a certain order of accuracy.

Consider d-dimensional Wiener process {W; = (W}, ..., W)} and d-dimensional
stochastic differential equation

dXy = a(t, X,)dt + b(t, X )dW; to <t < T (1)
where a = (a!,...,a™) is m-dimensional drift vector and b = (b"/) is m x d

diffusion matrix that we express in form ¥/ = (b%,...,b%),5 = 1,2,...,m.
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General form of s-stage explicit Runge-Kutta for approximating stochastic dif-
ferential equation (1)be stated as follows[1]:

s m s
Xn+1 = Xn + A Zaja(tn + [,LjA,T]j) + Z AW: Z,B;cbk(tn + /,L]'A,T]j) + R, (:
i=1 k=1 i=1

where uy =0, m = X, and

ji—-1 m i—1
= Xn+ B Njialtn + il m)+ ) AWE D b tn+ ), G=1, .
1=1 k=1 i=1

and R is the residual term. Numerical constants o, /6;", Ky Adjy 'yfj and R should
be chosen. Approximation (2) is B-equivalence with simplify form of Taylor
expansion with order 3.

Generalized Butcher array of coefficient in (2) will be:

K2 | Az a1 V3t
. . . . 1 . .
Hs ’\81 tee ’\8,3“1 ’731 <o Yss—1 7;'11 e 7.;’,131
R | 1 e Qg1 Qg | 6:11 e ﬂ;—l ﬁ; I e I ﬁ;n e ;n_l ﬂ;n

where the first matrix is deterministic coefficients and the rest matrices corre-
spond to stochastic parts depends on the Wiener Process components.

2. Weak approximation and It6-Taylor expansion

Suppose functions a = a(t,z),b’ = bi(t,z) in (1) are defined on [to,T] x R
and satisfy in both Lipschitz and linear growth bound conditions in zg. These
assumptions, ensure the existence of a unique solution of the SDE (1) with the
initial condition Xy, = Xp if Xj is p¢,-measurable.

Let X . denote the solution of (1) starting at time ¢ € {t, 7] and z € R. Let ¢,
be the space of all functions f(t,z) defined on [to, T} x R which have polynomial
growth (with respect to z), and suppose <pg define the subspace of functions
f € p, for which all partial derivatives up to order 8 = 1,2, ... belong to ©p.
Consider the following one-step approximation for d-dimensional equation (1)

Xt,z(t + h) = Xt,z(t) + A(t) Z, hv€)1 (3)

where A is some R-valued function and € is a random vector.
Suppose tg < t; < --- < txy = T is an equidistant partition of [to, T'] with step
size A = (T —tp)/N. The discrete approximation of one-step approximation (3)
is

Xo = Xo (4)

Xnt1 Xn+ A(tn.Xn,A,6,).n=0,..,N—1
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Discrete approximation X = {Xo, X1, ..., Xy} converge weakly to X with order
B if for each g € ¢2#*2, there exist kg > 0 such that
|Elg(XN) = g(Xr))| < ko0, ()

where £ is the order of the scheme[4].
Definition 2.1. Vector a = (j1,j2,.-,j¢) where j; € {0,1,2,..,m} and i €
{1,2,...,8} , m = 1,2,3,... is called multi-indez vector with length £ = {(a) =
{1,2,...,¢}.
Definition 2.2. A set A C M is a hierarchical set if

a) A is non-empty (A # ¢)

b) Length of multi-index A is uniformly bounded (sup,¢ 4 £(@) < o)

c) For any o € A\ {v}, then —o € A where v is a zero-length multi-index.
(—a is a vector when the first component of o be omitted).

Definition 2.3. For hierarchical set A, the remain set B(A) is defined:
={ae M\ A: —ae A} (6)

Consider the following operators

5] 1
0 _ —
L + Z oz Z___ x’@w’
L® = szk_?_ k=1,. )
~ Ot
m > .
where ¢ = E:b”“bch ,1,7=1,..d.
k=1

Suppose T'3(3 € N) be the set of all multi-index a = (j1, ..., /1) , Jx € {0,1,...,m}
with length [ € {1,...,8}. Let f : [to, T} x R — R be a function, if reminder
of Itd-Taylor expansion of f(t, X;) an hierarchical set I'3 U {v} be omitted, then
we obtain Truncated It6-Taylor expansion with order 3 [8}:

F(t.X0) ~ f(to, Xeg) + Y (L%F)(t0, Xuo) (8)
a€l'p
whereif a = (ji, ..., i) then L% = L¥0..0Lit , In = [T2 [3 . [T dW..dWi
and dW(© = dt.
If f(t,z) = z, then the one-step approximation will be:

Xt + D)=z + Y (L*f)(t, Xo) o (9)
ael's
such that
n+l Xn + Z La thn a,n: (10)

a€lg
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The scheme which construct from Truncated It6-Taylor expansion with order
3 be called weakly Taylor form with order 3, so the simplify Taylor form with
order 2 will be [7]:

" 1 -
Xn+1 = Xn +bA Wn +al +§bb01((AWn)2 - A)
1 1 .
+§(b10 + abm + 51)2502 + bam) A AWn (11)

1 1
+§(a10 + aagy + Ebzagz)A2,

where for g = g{t,z), t,z € R, we have

_ ati ~ .
g = goo = g(thﬂ) y Qi = W;j(tnvxﬂ) s and AWy ~ N{O) A)

Definition 2.4, Two diffusion process {Y;},{Z;} is n-equivalent in weak sense
if their weakly It6-Taylor expansion with order n at any point are equal and be
(n)

denoted Y; ~ Z;.

As an example, for d = m = 1, we have

(AW)® 3A(AW)
aawye € A (12)
awye 2 3

Obviously variables A*(AW)/ in mean-square sense with order 3,7/2,4, ... equiv-
alence with zero, ie.,

AWy 20, i+j/2>5/2 (13)

3. Runge-Kutta methods with order 2

Similar to the deterministic case, for the truncated expansion of (2), we have
to obtain truncated expansion with order 8 of f(t + A, X, + AX) with respect
to terms A and AX = Xy 0 — X;.

Tocino and Ardanuy calculated this expansion for # = 2 in multi-dimensional
and for # = 3 in the scalar case {9).
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A 2-equivalence between process and truncated expansion with order 2 is

8 53
fe+ax+ox) 254 A+z foz {6t2+}: Uata:c‘faxﬂ
)-7_

d
O o f L?
s kl _______ 15 ]cl________
3 2 (Z Bw‘) 30z 0cF | Z I maiarrad ) 7 (Y

1]1k 1 ,],kl 1
d
, Bf AXiAXI
Z <8t6 , Z e k) AAXTH lea o5 2

where all functions are evaluated at (¢, X;). In scalar case d = m = 1, by using
i+i
il

ij —
the notation ¢ = S0

——(t,.X,,), the formula (14) is reduced as follows:

2
fit+4,Xi+ AX) 2 foot+ fioD+fa AX

2

+ (fzo + 6% fiz + b3boy fos + s f04> = (15)
2

(et Saw) 0 0%+ 20D

3.1. Two-stage Runge-Kutta method. For s = 2 in scalar case, Runge-
Kutta method (2) reduces to the following form:

Xot1 = Xn + {010+ aga(ta + pd,n)} A
+{B1b+ Bab(tn + ulr,m)} AW + R, (16)

where n= X, + \a A+7b A W.

Suppose coeflicient a, b belong to <p6 By using (15) and the equivalence formulae

(12),(13), a 2-equivalence approximation for (16) be obtained and compared with
b

another approximation from simplify form of the Taylor method. Let % =k is

constant, in this case byj; = bga = bps = 0, then the system of equations has an
unique solution, and the following method be constructed:

Ropy = X,,+1bAW,.+lb(tn+A,X,,+aA+bAW ) AW,

+ Eam— —a(tn + A, X+ A+BAW,) A — ;gba. (17)

The Butcher array of the method is:

1 | 1 | 1
—-1/2bboiA [ 172 1/2[1/2 1/2




140 Ali R. Soheili and Zahra Kazemi

3.2. RK2-TO method. Tocino and Ardanuy [7] obtained the following RK
method with order 2 and s > 2:

Xn+1 = Xn + {alb + a2a(tn + ,U'A,"?)} A (18)
+{Brb + Bab(tn + u, ) + Bab(tn + ul\, 7))} AW + R,
where

= Xp+MA+AW, fG=X.+XaA+9AW,
= X, +td aA+FAW.

3 S

By using (15) and (12),(13) a 2-equivalence in weak sense for approximation (18)
can be obtained and by comparing it with weakly Taylor expansion with order
2, a system of equations can be derived.

An one parameter solution of the system is:

1 1 1 37y°
= = - =A=u=1 = -
ay (2] 2 y Y A 24 » 131 2 s ﬁ? 2+6'_)'2 3 183 2+6'_Y2
- = _ —1

Take R = %I)bol((AW)2 —A\), and for any ¥ # 0, from (19) the following scheme
be obtained:

Xnp1 = Xn+5bAWn+2+6 bt + A, Xn+a A+ AWL) AW,

2+626(tn+AX +a&——{>AWn)AW (20)
1, 0b

+2aA+ a(t +A,Xn+aA+bAW,) A 42 b—((AW )2 - 4),

where it is 2-equivalence with Taylor method with order 2.

3.3. RK2-PL method. Inautonomous case, d = 1,2, ... with constant diffusion
coefficient, m = 1, Kloden and Platen [4], offered the following explicit weakly
form with order 2:
1, .-
Yn+1 = Yn_ + §(G(T) + 0,) A (21)
1/ - _
+Z(6(T+) +5(T) + 2b) AW
| A - 2o _1
+Z(6(T )~ b(T )){(AW) —AyAE

with
T=Yo+aA+bAW, TE=Y,+aAb/A
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3.4. Three-stage Runge-Kutta method. By using the general form of Runge-
Kutta method, and for more accurate approximation, we consider the following
form:
Xnt1=Xn 4+ {16+ asa(tn + ped,m) + azalts + psd, m3)} A& (22)
+  {Bib+ Bab(tn + 2, m2) + B3b(tn + psld,ms)} AW,

where
m = Xn + )\210' TAN +721b A W,
n = Xp+dnmael
+Az2a(tn + 2, ) A +¥310 AW + v32b(tn + 2D, e) AW

and coefficient a and b belong to ¢§. By using (15) and equivalence forms (12)
and (13), we have

altn + 12D, Kn + Aara B 4110 AWIA 2 agibyar A AW +a A
+  aop2 A% +aag doy A2 +%a02b27§1 N2, (23)
and similarly
(2)

b(tn + e, Xn + M1aA+yabAW) AW b AW + bboyya (AW)?
+  biopo & AW + abgy Aoy & AW + ngboz’y%l A AW (24)

1
+ b(b11 + §b2b03)l$2’721 A? ~+abbgaA21 721 A?.
Now, we obtain truncated expansion with order two of a(t, + psf),73). For
simplicity, we take
M = n3—Xn=Xs1a A+Azna(te + p2ld, ;) + 1310 AW
+y32b(tn + p2d, ) AW
with (14), we have

(2

altn + w30, Xn+ M) ¥ a + ajous & +anM

b4 2A2
+ (002 + b%ay2 + b3boraos + —4—004) #22

2

b? M
+ (au + 50,03) o O M+ aogT.

Therefore

2
altn+ Do) 2 aA 4 arous A +ags &M (25)

b2 M2.A
+ (ap;+ —2-a03)u3 A% M + agy 5
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This 2-equivalence and (12) , (13) give the following equivalence forms:

(2)
AM ~ (A31 + Az2)a A% +(vay + Y32)b A AW + bboryorvs2 L2

a2m 2o (26)

(2)
AM2 ~ (’)’31 + ’)’32)2b2 A2 .

By substituting the above equivalence forms in (25)

(2)
altn + 3, M)A = aA +  ajous A% (Aa1 + Az2)aag A2
+ (131 + 7132)a01b A AW + agybbgyy21v32 A2

1
+ 5(731 + 7132)%a02b® A? (27)

Similarly, we obtain the Taylor expansion with order 2 of b(t, + u3,m3) AW,
and by using (15) and equivalence (12),(13), we have:

DOAW + biops A AW + by M. AW (28)

M2AW
2 ?

bt + 3, Xn + M) AW

b2
+ <b11 + gbos) u3s & AWM + boy

(A31 + Az2)a A Aw + (131 + 132)b(AW)? + agrbAs2yar A2
3bbo1Y21v32 N AW + biopgysy A?

MAW

+
3
+  abordzysz A +§b2b027§1’732A2,

MAAW & (y3 +732)bA?, (29)
M2AW 2(Aa1 + Ag2) (731 + 132)ab A2
+ 3(y31 + 732)%b% A AW + 36%bo1vz21v32 (a1 + va2) AL,
Substitute the above equivalence in (28). Then
2
btn + palma) AW 2 bAW + bious A AW + (A31 4 A32)aboy A AW
+ (Y31 + v32)bbor (AW)? + Az2v218010b01 A% 43701722003, A AW

3
+  p2ys2borbio A% +Aa1y32ab3, A2 +'2“’Y§1’732b21701b02 A2 (30)
b2
+  pa(yar + vs2)(by + Ebos)b A2 +(Aa1 + As2)(Ya1 + Y32)abbop A?

3 3
+ -2-(’)’31 + 732)%b%bo2 A AW + 5721’)’32(’731 + 732)b2bo1boz A

Now, by substituting (23),(24),(27) and (30) in (22), we can conclude, that the
following method is 2-equivalence:
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Xnv1 =Xn+t{atozt+az)ad+(Bi+ B8+ B)bAW
+(ozy21 + a3(ys1 + Y32))a01b A AW + (a2 + a3ps)aio O3
1
+(az2da1 + a3(Aa1 + A32))aags A2 +-2-(Ol2’Y§1 + aa(ys1 + Ya2)?)aosd? A?

+721(@3732 + B3As2)ao1bbor A% +(Bay21 + Bs(Va1 + Ya2))bbor (AW)?
+(Bapz + Baps)bio & AW + (Bada1 + Ba(As1 + Asz))abor A AW

3
+§(ﬂ2’Y§1 + Ba(ya1 + 732)%)0%b02 A AW

b2
+(Bap2¥21 + Bapz(ya1 + 732))b(b11 + Ebos) A2
+(BaAa1v21 + B3(A31 + Az2) (731 + ¥32))abboz A% +3B572173200%; A AW
3
+Bapayazborbio A% +B3A217320b8; A2 +§ﬂ37§1‘732b2b01 boz A2
3
+§ﬂ3'¥21732(’731 + v32)b?borboa A2 +R

Where the coefficients of the method satisfy with following system of equations,
then it coincide with truncated Taylor expansion with order 2.

ojtaztoez=1 , fi+fa+fs=1
1 1
agpptosps =5, oy tos (31 +732) = 2
1 1
azMo1 + az(As1 + Az) = 3 o272 + asz(ya +s2)° = 3
B3v21v3:2 =0 , "oai(azysr +Badaz) =0

1
Bapzyzz =0 , Popz+ Baus = 3

B3daiyaz =0 ,  Bodar + Ba(Aar + Az2) = = (31)

o s NI

By =0 , Bovi +Bs(ya +732)° =

Bavarys2(yar +v32) =0 ,  Bapoya + Bapa(ya +v32) =0
B2A21721 + B3(A31 + As2) (a1 +732) =0

where R = 1bbo1 ((AW)? — A).

The above system in Maple environment be solved and observed that the system
has two classes of two parameters solution and three groups of one parameters
solution that we discuss on these answers.

Case 1: Two parameter solution has the following Butcher’s array:

A21 Y21
Az; 0 731 O

lar a2 o3| Bt B2 B3

M2
43




144 Ali R. Soheili and Zahra Kazemi

where:
Aol = pe2
by = yarpi2 (2 — 1)
(B2 — 3751 (2 — Y1) (721 — 1)
o Yerh2(p2 — 751)?
(2 — 37v2)2 (2 — Y21)(v21 — 1)
a1 = t2(p2 — 7221)
(b2 — 7y21) (2 ~ 373))
o = LEBFhe = pvn = e - 39 + 37
2 p2(p2 —¥3)
@ = R e
2 p5yo — 373 e + 305, — 13
as = l (y21 — 1) (g = ’721)2(N2 - 37221)2
2 po(p2 — 3 ) (B8y21 — 3v3 12 + 33, — 13)
5 = 1543 - 673113 — p3v21 — 313 — 3pagy + 8v3ipe + 9731 — 93,
6 (u2 — 731)% 2
g = 1 B2 — Va1
2 p2v21 — 3v3 po + 33, —
gy = Ll =33 4303 — )2 — 70)* (ke — 375)°

6 pa(pdvar — 373 k2 + 373 — ud)(ue — v51)?

Case 2: For v3; # {0,1, —1/2}, one-parameter solution has this form:

1 1 1
3’7%1 3'7%1 a1 0
14+2v3 | 14273 e -
Y3, — 3731 — 14295
1/2 1/2 0 673, 2(va1—1) 673, (—1+7:

In the particular case y3; = 1/3, has the following Butcher array:

1
1/5

1 1
1/5 0 1/3 0
[1/2 1/2 0| -5/2 -1/4 15/4

Case 3: For 3, # 0, one-parameter solution is in form:
1 1
— — 0
262 | 262
0 0 0 1 0

| —Bz+5 B2 1/2|—-P2+3§ B2 1/6
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And for 8, = 1, the Butcher's array is:

1/21 1/2 0
0] 0 © 1 0
=12 1 1/2[-1/6 1 1/6

Case 4: For 33 # 0, one-parameter solution is:
0 0 1
1 1
TN i 753 0 0 0
|3—-08s 1/2 B3| 3—-Bs 1/6 B
And for 33 = 1, the method determine with the following Butcher's array:

0] 0 1
/21 1/2 0 0 0
[=1/2 1/2 1]-1/6 1/6 1

Case 5: For g # 0, two parameters solution are:

B2 | p2 0

0] —=Xs2 Az 1 0
—T 1 53 1
e s V2| am U6

and in particular case up = 1/2, Az2 = 1, Butcher's array is:

1/2| 1/2 0
0| -1 1 1 0
[—1/2 1 1/2|-1/6 1 1/6

All solution of 3-stage Runge-Kutta method with order 2, except case 5 that
w3 = 0, we have yag = Az = (.

4. Numerical results

3 ©0s Ot 015 02 025 03 03% 04 045 OS5 004 005 [ 0.07 [ ()
Delta

FIGURE 1. k, with respect to A for approximating E[X]
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kg St.dev Error A
21.7460 | 6.13786 | 5.43673 | 2~!
359861 | 7.71982 | 2.24913 | 272
38.3568 | 8.74094 | 0.599326 | 23 || RK2-TO
7.10071 | 9.38082 | 0.0277606 | 2—4
171.812 | 9.92599 | 0.167785 | 25

21.7269 | 6.1347¢ | 543172 | 271
36.0028 | 7.72699 | 2.25018 | 2~2
38.0028 | 8.74195 | 0.599633 | 2-3 || RK2— PL
6.96173 | 9.38113 | 0.0271942 | 274
172.376 | 9.92629 | 0.168336 | 25

21.7424 | 6.138 5.4355 | 2-1
359480 | 7.7198 | 224681 | 272
38.1766 | 8.74103 | 0.596509 | 273 || RK2 — 3st
6.50332 | 9.38097 | 0.0254036 | 2—¢
173.412 | 6.92609 | 0.169348 | 2-5

TABLE 1. Numerical results for three method RK2—PL, RK2-TO
and RK?2 — 3st for approximating E|X:]

In this section, the new 3-stage Runge-Kutta method compare with other
well-known methods. We state two examples. Runge-Kutta method (20) and 3-
stage Runge-Kutta in case 2 for y3; = 1/3 are denoted by RK2-TO and RK2-3st
respectively. In the following examples, we consider one-dimensional (d =m =
1) nonlinear differential equation. Our aim is to estimate E[g(X.)] for g{z) =z
and g(z) = 2%, where X; is the solution of differential equation. Here, N = 5000
simulation paths with step size A = 271,...,275 be applied for approximation
of the mathematical expectation.

The mean, the standard deviation of the errors and an estimation of the kg in
(5) for each methods are presented in Table 1 and Table 2.

The CPU time be plotted for each test examples. All results have been calculated
with the same conditions for all methods in Mathematica and Matlab.

Example 1. Consider nonlinear stochastic differential equation
1 1 2 2
aX: = (ng + 6Xt3) dt + X2dWXp =1

3

with exact solution X; = {2t + 1+ _V;ﬁ . We want to estimate E[X;] = 28.

Result be presented in the following table.

In the following figure, the value of k, with respect to A for the same order
methods RK2-TO, RK2-PL and RK2-3st are compared. A truncated of the
figure with larger scale shows the differences of k; among these methods.

Figure 2 shows CPU time of the mention methods in table 1.
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w*

=+ Euler

=~ ~ RK2-TO
-+ RK2-PL
— AK2-3st

Time

F1GURE 2. CPU time for approximating E[X]

Numerical results in Table 1 and group of k; in Figure 1 shows that new
Runge-Kutta works better than others. The mean value of error for A < 274 =
0.0625 increase and so kg be large.

Example 2. Consider nonlinear stochastic differential equation in Example 1,

3

869 + % Result be presented in the following table.

In the following figure, the value of k, with respect to A for the same order
methods RK2-TO, RK2-PL and RK2-3st are compared. A truncated of this
figure with larger scale shows the differences of k; among these methods.

with exact solution X; = (Zt +1+ —VY—t—> , and we want to estimate E[X?] =

— RR-TO ‘o""‘ " T i — 2-TQ
& - - RIG-PL - - fan
1 AK2—3a A2

FIGURE 3. k, with respect to A for approximating E[X]
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kg St.dev | Error | A
1289.01 | 300.921 | 322.254 | 2 1
2341.28 | 442.732 | 146.33 | 272
2677.43 | 540.098 | 41.8349 | 273 || RK2 - TO
360.387 | 617.493 | 1.40776 | 27*
23459 | 695.458 | 2.9092 | 275

1288.26 | 296.48 | 322.065 | 27!
2340.36 | 440.605 | 146.273 | 272
2677.38 | 539.145 | 41.8341 | 273 || RK2 - PL
370.004 | 617.129 | 1.44533 | 274
23296.7 | 695.353 | 2.946 | 27°

1288.8 | 300.989 | 322.210 | 27T
2339.36 | 442.819 | 146.21 | 272
2667.45 | 540.182 | 41679 | 27% || RK2 - 3st
304.877 | 617.565 | 1.54249 | 274
23551.1 | 695.503 | 2.9991 |27

TABLE 2. Numerical results for three methods RK2 — PL, RK2 —
TO and RK2 ~ 3st for approximating E[X7)

Figure 4 shows CPU time of the mention methods in table 2

1

s 01 o5 02 225 oy 03§ o4 04y o5
Dens

FiGURE 4. CPU time for approximating E[X]|
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