• Title/Summary/Keyword: firing strength

Search Result 173, Processing Time 0.026 seconds

Physiological Review of Weakness in Patients with Hemiparesis (편부전마비 환자에서의 근육약화에 대한 생리학적 고찰)

  • Kim, Jong-Man;Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.84-94
    • /
    • 1996
  • This paper reviews physiological changes in the nervous system of patients with hemiparesis that may contribute to muscle weakness. The discussion includes the important role that alterations in the physiology of motor units, notably changes in firing rates and muscle fiber atrophy, play in the manifestation of muscle weakeness. This role is compared with the lesser role that spasticity of the antagonist muscle group appears to play in determining the weakness of agonist muscles. The contribution of other factors that result in mechanical restraint of the agonist by the antagonist is discussed relative to muscle weakness in patients with hemiparesis. More studies on patients with hemiparesis are required to assess what role muscle strength training should play in rehabiliting patients after a stroke.

  • PDF

Abrasion Resistant Paver Production Utilising Modern Brickmaking Technology: Possibilities and Difficulties

  • Ozucelik, Nazmi
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.368-371
    • /
    • 1998
  • The work aims to evaluate the necessary physical properties of Abrasion Resistant Pavers designed for high volume pedestrian and road vehicle traffic and their influence on the selection of raw materials and ceramic processes. The pavers' specifications such as high strength and ware resistance demand a careful clay preparation, slow drying, slow firing and a balanced chemical and mineralogical composition. Therefore, developing abrasion Resistant Pavers in existing modern brickmaking plants, which are designed primarily for making bricks and pavers for domestic applications, has become a challenge for manufacturers and ceramic professionals. The significance of quality control and research and development in the production of these high class pavers is also emphasised in this work through the investigation of a paver that exhibits shrinkage cracking.

  • PDF

Studies on the Utilization of Domestic Shale contained Chiastolite for Ceramics (국산 공정석함유 혈암의 요업적 개발에 관한 연구)

  • 정영기;오재현;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.3
    • /
    • pp.3-7
    • /
    • 1975
  • The usefulness of the domestic shale contained chiastolite as additive were investigated. Crude mixed minerals were separated into shale and chiastolite. Refractory body added simple component or multiple components as additives was obtained when firing at 125$0^{\circ}C$ for each body. Compressive strength, refractories, apparent sp. gr., water absorption, corrosion test by slag, hot linear expansion were measured and X-ray diffraction analysis was observed. As the result of study, refractory body contained separated minerals as additives showed slightly increasing in refractoriness, lowering in sintering effect, the excellent effect for corrosion resistance by acidic slag. With more containing separated minerals, hot linear expansion for the body can be decreased.

  • PDF

A Study on the Porcelain Body of $MgO-SiO_2$ System(II) ($MgO-SiO_2$ 계 자기에 관한 연구(II))

  • 이응상;이종근;최성철;안기성
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.3
    • /
    • pp.243-249
    • /
    • 1983
  • This study has examined on the effect for the fitting in porcelain body of MgO-SiO system. The mixture was made of correponding in the theoretical composition of enstatite with Kyul Sung Talc and sea water magnesia cake. Hyup Jin Kaolin as clay minerals to give the mixture plasticity was added 10% by weight of the mixture. Feldspar was added inv various kinds of 1%-20% by weight of the above mixture. After the physical properties and microstructures were carefully examined the following results were obtained. 1. The addition amount of feldspar should generally be from 5% to 10% by weight of the mixture to be good for the properties of the strength and the range of the firing temperature. 2. The 5% addition amount of feldspar was good for the apparent bulk density. 3. 5% and 10% additions showed up stably excellant with respect to the various properties Therefore when we considered the apparent bulk density and the thermal shock resistance 5% addition amount of feldspar showed the most excellant properties between $1350^{\circ}C$ and $1400^{\circ}C$.

  • PDF

Reaction Sintered Mullite-Spinel-Zirconia Composites (반응소결 물라이트-스프넬-지르코니아 복합체에 관한 연구)

  • 박홍채;편지현;이윤복;류수착;박성수;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1255-1261
    • /
    • 1995
  • Mullite-spinel-zirconia composites were prepared by reaction sintering of calcined alumina and magnesia, and zircon powders. The influence of calcining temperature on densification processes and on mechaical properties of subsequently sintered compacts was investigated. The mullite was formed by the reaction of $\alpha$-Al2O3 and amorphous SiO2 at firing temperatures over 141$0^{\circ}C$. The mullitization proceeded more rapidly in the specimen calcined at 110$0^{\circ}C$ than at either 120$0^{\circ}C$ or 130$0^{\circ}C$. Microstructures before and after the mullitization (or mullite dissociation) showed different morphologies, and their effects on mechanical properties were significant. The flexural strength and fracture toughness of the specimen calcined at 130$0^{\circ}C$ and subsequently fired at 145$0^{\circ}C$ were 316 MPa and 4.2Mpa.m1/2, respectively.

  • PDF

The Fabrication and Their Properties of Zirconia-spinel COmposites by Reaction Sintering (반응소결에 의한 지르코니아-스피넬 복합체의 제조 및 성질)

  • 황규홍;김상모
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.779-784
    • /
    • 1996
  • The spinel/cubic stabilized zirconia composites were fabricated via, The reaction sintering of monoclinic zirco-nia(baddeleyite) added with MgAl powder. During heating Mg and Al were oxidizedfirst and subsequently the oxides formed spinel (MgAl2O4) and finally remained MgO stabilized the zirconia, Because the oxides formed during the oxidation process would have very fine grain size (order of submicron) mainly due to the effects of attrition milling the reaction sintering was more effective in densification and improvement of strength and fracture toughness than conventional sintering with direct addition of MgO. The sintering behavior phase transformation during firing and mechanical properties of sintered body were investigated with emphasis on the relations between spinel formation due to MgAl addition and sintering and mechanical properties.

  • PDF

The Effect of Al Powder as an Additive on the Sintering of $Al2_O_3$ (I. In air, $1350~1550^{\cire}C$) (첨가된 알루미늄 분말의 산화가 알루미나 소결에 미치는 영향(I. 공기중, $1350~1550^{\cire}C$에서))

  • 박정현;안주삼;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 1983
  • The main object of this study is to investigate the effect of Al powder as an additive on the sintering of calcined alumina comparing with that of calcined alumina alone. The degree of Al oxidation is calculated by measuring the weight increase during the firing Water absorption bulk density and compressive strength of the $Al_2O_3+Al$ system at each temperature are compared with those of $Al_2O_4$ alone. The $Al_2O_3+Al$ system shows better physical propeties than Al2O3 alone and it seems by the SEM observation that the fine oxidized Al particles(fine $Al_2O_3$ particles submicron unit) fill the interstices of the original $Al_2O_3$ par-ticles and thus result in the well-close-packed arrangement of the particles.

  • PDF

Analysis of Physicochemical Properties and Firing Temperature for the Clay Bricks Excavated from the Maritime Province of Severia (연해주 콕샤로프카-1 평지성 출토 토벽의 물리화학적 특성 및 소성온도 분석)

  • Kim, So-jin;Heo, Jun-su;Kim, Jin-hyoung;Kim, Dong-hun;Han, Min-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.206-219
    • /
    • 2013
  • This study aims to estimate firing temperature and physicochemical properties of the four clay bricks excavated from the Maritime Province of Siberia. Analysis result shows that the specimens are composed of clay, quartz and feldspar, and some specimens include carbonized organic materials which were probably added in order to enhance its physical strength in bricks. Major mineral components of the bricks are quartz, illite and clay minerals. The result identifying the existence of silimanite by XRD suggests that white material of the Koc 1 was painted for a certain purpose. Unlike most specimens which contained hematite, several samples contain Mullite. Such result suggests that some bricks were fired at high temperature. Furthermore, the results from TG analysis which does not display exothermic peak which appears at between $800^{\circ}C$ to $1,000^{\circ}C$ but display endothermic peak at $900^{\circ}C$ and it also confirms that they were exposed at $900^{\circ}C$ or higher.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining (치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성)

  • Kim, Sang-Su;Lee, Dong-Yoon;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.