• Title/Summary/Keyword: firing cycle

Search Result 57, Processing Time 0.028 seconds

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF

A study on refractive index of silicon nitride thin film according to the variable constant temperature and humidity reliable research (굴절률 가변에 따른 silicon nitride 박막의 항온/항습 신뢰성 연구)

  • Song, Kyuwan;Jang, Juyeun;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • 결정질 실리콘 태양전지의 표면 ARC(Anti-reflection Coating)layer는 반사도를 줄여 광 흡수율을 증가시키고, passivation 효과를 통하여 표면 재결합을 감소 시켜 태양전지의 효율을 높이는 중요한 역할을 한다. Silicon nitride 박막은 외부 stress 요인에 대해 안정성을 담보할 수 있어야한다. 따라서, 본 연구에서는 굴절률 가변에 따른 silicon nitride 박막을 PECVD를 이용하여 증착하고, 항온/항습 stability test를 통해 박막의 안정성을 확인하였다. Silicon nitride 증착을 위해 PECVD를 이용하였고, 공정압력 0.8Torr, 증착온도 $450^{\circ}C$, 증착파워 300W에서 실험을 진행하였다 박막의 굴절률은 1.9~2.3의 범위로 가변하였다. 항온/항습에 대한 신뢰성을 test 하기 위하여 5시간동안의 test를 1cycle로 하여 20회 동안 실험을 실시하였다. 증착된 silicon nitride 박막의 lifetime은 firing 이후 57.8us로 가장 높았으며, 항온/항습 test 이후에도 유사한 경향을 확인 할 수 있었다. 또한, 100h 동안의 항온/항습 test 결과 silicon nitride 박막의 lifetme 감소는 8.5%에 불과했다. 본 연구를 통하여 온도와 습도의 변화에 따른 결정질 실리콘 태양전지의 SiNx 박막의 증착 공정 조건에 대한 신뢰성을 확인 할 수 있었다.

  • PDF

Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect (탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가)

  • Lee, Chan;Kim, Yong Chul;Lee, Jin Wook;Kim, Hyung Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

Development of a Dispersion Analysis Program for the Liquid Rocket Engine and its Application (액체로켓 엔진 성능 분산해석 프로그램의 개발 및 응용)

  • Park, Soon-Young;Nam, Chang-Ho;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we developed a dispersion analysis program of the gas-generator cycle liquid propellant rocket engine by expanding the mode analysis software(GEMAT). The performance dispersions of an engine that are arisen from the internal dispersion factors of engine's sub-components were formulated and solved to find the effects of each dispersion factor. We were also able to present the calculation method to find the required pressure margin for the compensation of those dispersion to satisfy the required performances of engine. Using this method, we could propose a novel procedure of compensating during the ground firing test which would induce the performance improvement by lessening the pumps discharge pressures or augmenting the combustion chamber pressure.

Application of Full-Face Round by Sequential Blasting Machine in Tunnel Excavation (터널굴착에서 다단식 발파기에 의한 전단면 발파의 적용성 연구)

  • 조영동;이상은;임한욱
    • Explosives and Blasting
    • /
    • v.13 no.1
    • /
    • pp.20-31
    • /
    • 1995
  • Many methods and techniques to reduce ground vibrations are well known. Some of them are to adopt electric milisecond detonators with a sequential blasting machine or an initiating system with an adequate number of delay intervals. The types of electric detonators munufactured in Korea include instantaneous, decisecond and milisecond delays byt numbers of delay intervals are only limite from No.1 to No.20 respectively. It is not sufficient to control accurately milisecond time with these detonators in tunnel excavation. Sequential fire time refers to adding an external time delay to a detonators norminal firing time to obtain sequential initiation and it is determined by sequential timer setting. To reduce the vibration level, sequential blasting machine with decisecond detonatore was adopted. A total of 134 blasting was recorded at various sites. Blast-to-structure distances ranged from 20.3 to 42.0 meter, where charge weight varied from 0.25 to 0.75 kg per delay. The results can be summarized as follow : 1. The effects of sequential blasting machine on the vibration level are discussed. The vibration level by S.B.M. are decreased approximately 14.38~18.05 to compare to level of conventional blasting and cycle time per round can be saved. 2. The empirical equations of particle velocity were obtained in S,B.M. and conventional blastin. $V=K(D/W^{1/3})-n$. where the values for n and k are estimated to be 1.665 to 1.710 and 93.59 to 137 respectively. 3. The growth of cracks due to vibrations are found but the level fall to within allowable value.

  • PDF

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.

Thermal Performance Analysis of Combined Power Plant Using Coal Gas - Development of the Steady-state Model - (석탄가스를 사용하는 복합발전 플랜트의 열성능 해석 -정상상태 성능해석 모델 개발-)

  • 김종진;박명호;안달홍;김남호;송규소;김종영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.8-18
    • /
    • 1996
  • As a part of comprehensive IGCC process simulation, the thermal performance analysis was performed for coal gas firing combined power plant. The combined cycle analyzed consisted of il Texaco gasifier and a low temperature gas cleanup system for the gasification block and a GE 7FA gas turbine, a HRSG and steam turbine for the power block. A steady state simulator called ASPEN(Advanced System for Process Engineering) code was used to simulate IGCC processes. Composed IGCC configuration included air integration between ASU and gas turbine and steam integration between gasifier, gas clean up and steam turbine. The results showed 20% increase in terms of gas turbine power output(MWe) comparing with natural gas case based on same heat input. The results were compared with other study results which Bechtel Canada Inc. performed for Nova Scotia power plant in 1991 and the consistency was identified within two studies. As a result, the analysing method used in this study is verified as a sound tool for commercial IGCC process evaluation.

  • PDF

Characteristics on Combustion Mode in Dual Mode Scramjet Engine (이중모드 스크램제트 엔진의 연소모드 특성)

  • Namkoung, HyuckJoon;Shim, ChangYeul;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.330-335
    • /
    • 2017
  • Recently many studies have been made for the development of propulsion system with wide range flight from supersonic to hypersonic. Dual Mode scramjet engine as a hybrid cycle with advantage of ramjet and scramjet has one combustor. It works under the ramjet mode (subsonic combustion) and scramjet mode (supersonic combustion) respectively. In this study, Experimental results of hot firing tests of dual scramjet engine designed on the condition of Mach 3.5~6 as a flight Mach number are discussed. The tests were carried out on a ground test bench under free stream condition of Mach 6 at 27.6km altitude. In the tests, the adopted design and technological solutions were verified and efficient operation of the dual mode ramjet engine with Kerosene combustion during 5 seconds was demonstrated.

  • PDF