• Title/Summary/Keyword: fire spread

Search Result 476, Processing Time 0.03 seconds

A Study on Flash Over Delay Effects on Applied Plate-Fire Spread Prevention Method at Sandwich Panels Structure (샌드위치패널 건축물 플래시오버 지연을 위한 화재확산방지플레이트 시공방법 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.79-87
    • /
    • 2017
  • Sandwich panels which are having the both sides are bonded with a heat insulating material with an iron plate are used as factories, warehouse structures as advantages of convenience in construction at economic efficiency of material cost. However, in a panel structure constructed by continuous joining of sandwich panels, a joint portion where a panel and a panel are connected is generated. The joint part is a part which is easily vulnerable to fire because flames easily flow into the melting and deformation of the iron plate during fire. The flames flowing into the panel induce diffusion of fire by rapid burning, causing damage of human life and property. In this research, we developed a flame spread prevention plate to prevent spreading of sandwich panel. This is an improvement of the workability by the anti-spreading construction method of the existing previous research, it can be applied independently to the connecting part where the panel and the panel are coupled, designed to prevent inflow and spreading of flame did. The actual fire test of the test method of KS F ISO 13784-1 of the sandwich panel specimen was conducted and the burning behavior corresponding to the presence or absence of application of the flame spread prevention plate was grasped at the panel connection part and its effect was measured. Inserting a fire spreading plate into the test result panel connecting part is measured by delaying the flashover, prevention of collapse of the specimen, and temperature rise of the opening, effectively improving the fire safety of the panel structure It was confirmed as a method that can be secured. It is judged that panel structure will contribute to ensuring fire safety by applying the fire spread prevention construction method of various methods ensuring the workability and economy of panel connection vulnerable to fire.

Evaluation on Fire Spread Speed of Standard Rack in Korea for Performance based Fire Extinguishing System (성능위주 소화설비 적용을 위한 표준랙크의 화재확산속도 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.84-91
    • /
    • 2016
  • In case of fire, vertically and intensively loaded rack warehouses are faced with a severe status due to the rapid increase in fires. In this regard, there have been trials to prevent fires from spreading by applying fire extinguishing systems, such as ESFR and In-Rack Sprinklers, vertical and horizontal barriers, etc.; however, it is difficult to calculate and design proper fire extinguishing systems caused by various composition conditions, such as the size and loading density of the rack, types of loading commodities, etc. Therefore, in this study, a standard rack was manufactured, incorporating a rack warehouse in Korea by site investigations, surveys, etc. In addition, a full scale fire test was executed to check the fire characteristics depending on the conditions of the ignition points. As a result, the extracted fire spread speed is expected to be utilized as a reference for performance comparisons of the fire extinguishing systems to be developed and applied in the future.

선박 화재안전과 SOLAS 협약

  • Ryu, Eun-Yeol
    • Fire Protection Technology
    • /
    • s.17
    • /
    • pp.24-32
    • /
    • 1994
  • This article introduces the transition of SOLAS (The International Convention for the Safety of Life Sea) safety regulations for fire protection, fire detection and fire extinction in ships. And also the regulations and the related IMO fire test rules applied to products such as fire sep-arate walls and non-combustible materials for interior to prevent fire spread on the ship fire are summarized.

  • PDF

Establishment of the Method for Evaluating the Risk of Fire Spread to the Upper Floors due to Ejected Flame from an Opening in the Building Fires (건축물 화재시 개구분출화염으로 인한 상층부로의 화재확대 위험성평가 방법 구축)

  • Shin, Yi-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.216-217
    • /
    • 2020
  • As the fire inside the building grows rapidly, ejected flame from an opening occurs due to flashover. As a result, the number of cases where the flame spreads to the exterior of the building and rapidly expands to the upper floor is increasing. In particular, in the case of the fire in the Daebong Green Apartment, Uijeongbu in 2015, it was a case where the flame spread to adjacent buildings due to the opening eruption flame from the first ignited building, causing great damage to three apartments. Therefore, this study is to introduce an international standard under development that estimates the shape and properties of the ejected flame from an opening and quantitatively evaluates the radiant heat flux received by the exterior wall of the building by assuming the occurrence of the ejected flame from an opening.

  • PDF

Assessment of Grid Sensitivity in the FDS Field Model to Simulate the Flame Propagation of an Electric Cable Fire (케이블 화재의 화염전파 해석을 위한 FDS 모델의 격자민감도 평가)

  • Kim, Sung-Chan;Lee, Seong-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.30-35
    • /
    • 2008
  • The present study has been conducted to examine the effect of grid resolution on the predicted results for electric cable fire using pyrolysis model in FDS(Fire Dynamics Simulator, version 5). The grid independent test for different grid resolutions has been performed for a PE coating cable and the grid resolution is defined by the non-dimensional characteristic length of fire and mean grid size. The calculated maximum heat release rate and mean flame spread rate were almost constant for higher grid resolution of 20${\sim}$25 and the computing time for the grid resolution takes approximately 20hours to solve flame propagation with pyrolysis model. The geometrical simplification of a electric cable dose not greatly affect on the maximum heat release rate and flame spread rate and the rectangular approximation of cable shape gives acceptable result comparing with the round cable with stepwise grid.

A Study on the Recording Technology of Fire Propagation Prevention Wall Using Horticultural Plants (원예식물을 식재한 화재확산 방지용 벽면녹화 기술연구)

  • Moon, Jong-Wook;Lim, Seo-Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • Purpose : This study is to develop walls using wall recording technology applied on roofs to prevent fire spread in traditional markets. Method : The spray head installed on the developed wall was designed so that the fire does not spread to adjacent buildings after being used for plants. In addition, a spray head was attached to the upper section and some sections for the growth of plants planted on the wall to prevent the spread of fire. Results : These technologies suggested the development of walls that can be installed at the upper level of buildings, such as traditional markets, and separate isolation facilities were not necessary because they are integrated with structures and sprinklers. In addition, sprinklers can perform both the plant spray and fire spread prevention functions. It is believed that this is the only alternative technology proposed in Korea to prevent the spread of fire. Conclusion : In this study, the wall design, designed directly to derive the quantitative performance of the fire spread reduction effect, demonstrated the fire suppression method of the wall system, the durability of the wall itself, and the flame retardability performance.

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

A Study on Problems of High-rise Building Fires in Korea and the Basic Directions for Fire Safety of High-rise Building Design (우리나라 고층건축화재의 문제점과 그 대책의 기본방향에 관한 연구)

  • 이강훈
    • Fire Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-26
    • /
    • 1990
  • Building become higher. larger and more complex than ever before, showing abrupt changes in building structures. forms and mechanical systems. Likewise hazads of fire and the scale of fire losses become more and more greater. Therefore. considerations for fire safety take up great portion of the building design process. In this study, problems of high-rise building fires and basic directions for fire safety of high-rise building design were studied through the statistical analysis of 138 fire cases. The results of this study are summarized as follows : ·Most of the fires in high-rise building occur on the low floors and the fire frequencies are very low on the upper floors. Fire casualties are liable to be more on the upper floors than on tile floor of fire origin. ·The important causes of evacuation failures were analyzed as being late in escape and lack of stairwell enclosures. ·The main cause of vertical fire spread is lack of stairwell enclosures. However, the fire spreads mainly through the enterior windows in apartment houses. The combustible materials in buildings act on as the major factors of horizontal fire spread and the improper fire doors play role of another the critical causes. ·The basic directions for fire safety of high-rise building design put much stress firstly on the compartmentation of the buildings effectively performing the provision of safe escape routes and the safe refuse places in buildings.

  • PDF